DOI QR코드

DOI QR Code

Effects of Rapid Thermal Process on the Junction Properties of Aluminum Rear Emitter Solar Cells

  • Park, Sun-Geun (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Young-Do (Department of Materials Science and Engineering, Korea University) ;
  • Bae, Soo-Hyun (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Seong-Tak (Department of Materials Science and Engineering, Korea University) ;
  • Song, Joo-Yong (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Hyun-Ho (Department of Materials Science and Engineering, Korea University) ;
  • Park, Hyo-Min (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Soo-Min (Department of Materials Science and Engineering, Korea University) ;
  • Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
  • Published : 2012.08.20

Abstract

N-type silicon with aluminum emitters for rear junctions was studied; aluminum back surface fields were replaced with n-type silicon wafers. Aluminum rear emitters for n-type silicon solar cells were studied with various rapid thermal processing conditions. With fast ramping-up and fast cooling, an aluminum rear junction was formed uniformly with low emitter recombination current. The effects of junction quality on solar cell efficiency were investigated.

Keywords

References

  1. J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, IEEE Trans. Electron Devices. 53, 1893 (2006). https://doi.org/10.1109/TED.2006.878026
  2. J. Schmidt, A. G. Aberle, and R. Hezel, Proc. 26th IEEE Photovoltaic Specialists Conf., p.13, Anaheim, CA, USA (1997).
  3. D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, Sol. Energy Mater. & Sol. Cells 65, 621 (2001). https://doi.org/10.1016/S0927-0248(00)00150-1
  4. C. Schmiga, H. Nagel and J. Schmidt, Prog. Photovoltaics 14, 533 (2006). https://doi.org/10.1002/pip.725
  5. R. Bock, J. Schmidt, S. Mau, B. Hoex, E. Kessels, and R. Brendel, Proc. 34th IEEE Photovoltaic Specialists Conf., p.30, Philadelphia, USA (2009).
  6. M. Rauer, C. Schmiga, M. Hermle, and S. W. Glunz, Proc. 24th European Photovoltaic Solar Conf. and Exhibition, p.21, Hamburg, Germany (2009).
  7. C. Schmiga, M. Rauer, M. Rüdiger, K. Meyer, J. Lossen, H.-J. Krokoszinski, M. Hermle and S. W. Glunz, Proc. 25th European Photovoltaic Solar Conf. and Exhibition, p.1163, Valencia, Spain (2010).
  8. K. Kim, S. K. Dhungel, U. Gangopadhyay, J. Yoo, C. W. Seok, and J. Yi, Thin Solid Films 511-512, 228 (2006). https://doi.org/10.1016/j.tsf.2005.12.131
  9. S. Noel, H. Lautenschlager, and C. Muller, Prog. Photovoltaics 9, 41 (2001). https://doi.org/10.1002/pip.353
  10. J.-W. Jeong, A. Rohatgi, V. Yelundur, A. Ebong, M. D. Rosenblum, and J. P. Kalejs, IEEE trans. Electron Devices, 48, 2836 (2001). https://doi.org/10.1109/16.974713
  11. S. Narasimha, A. Rohatgi, and A. W. Weeber, IEEE Trans. Electron Devices, 46, 1363 (1999). https://doi.org/10.1109/16.772477
  12. H. Y. Koo, J. H. Kim, J. H. Yi, Y. N. Ko, and Y. C. Kang, Korean J. Met. Mater. 48, 570 (2010).
  13. F. M. Roberts and E. G. Wilkinson. J. Mater. Sci. 6, 189 (1971). https://doi.org/10.1007/BF00550012
  14. F. M. Roberts and E. G. Wilkinson, J. Mater. Sci. 3, 110 (1968).
  15. A. Cuevas, Sol. Energy Mater & Sol. Cells 57, 277 (1999). https://doi.org/10.1016/S0927-0248(98)00179-2
  16. A. Rohati, P. Rai-choudhury, IEEE Trans. Electron Devices ED-31, 5, 596 (1984).

Cited by

  1. Enhanced boron gettering effect of n-type solar grade Si wafers by in situ oxidation vol.19, pp.6, 2013, https://doi.org/10.1007/s12540-013-6035-6
  2. 분위기에 따른 실리콘 태양전지 후면 전극 및 후면 전계의 형상과 특성 분석 vol.25, pp.7, 2012, https://doi.org/10.3740/mrsk.2015.25.7.336
  3. Analysis of aluminum back surface field at different wafer specifications in crystalline silicon solar cells vol.16, pp.9, 2012, https://doi.org/10.1016/j.cap.2016.05.016
  4. Amorphous Silicon Thin Film Deposition for Poly-Si/SiO2 Contact Cells to Minimize Parasitic Absorption in the Near-Infrared Region vol.14, pp.24, 2021, https://doi.org/10.3390/en14248199