DOI QR코드

DOI QR Code

Review on Nanostructured Semiconductors for Dye Sensitized Solar Cells

  • Prakash, T. (Department of Medical Bionanotechnology, Chettinad University)
  • Published : 2012.06.20

Abstract

Nanostructured semiconductors with different morphologies are used widely in various applications in order to enhance their technological advancements compared with the bulk sample. This flourishing nanoscience field has enabled rapid developments that have created numerous opportunities for scienctific advancements with various devices. Considering large environmental impacts such as global warming, problems of nuclear waste storage and nuclear accidents, there is an urgent need for environmentally sustainable energy technologies such as solar cells and fuel cells. In the present paper, the role of nanostructured semiconductors in dye-sensitized solar cells (DSSCs) is reviewed entensively. The review discusses the present developmental prospects of DSSCs and the problems associated with its layer materials and propose a method of overcoming these problems.

Keywords

References

  1. The Lycurgus Cup, Trustees of the British Museum, http:// www.britishmuseum.org/explore/highlights/highlight_objects/pe_ mla/t/the_lycurgus_cup.aspx (2012).
  2. Jose-Yacaman, L. Rendon, and J. Arenas, Science, 273, 223 (1996). https://doi.org/10.1126/science.273.5272.223
  3. C. N. R. Rao, G. U. Kulkarni, and P. J. Thomas, Nanocrystals: Synthesis, Properties and Applications, p. 2, Springer-Verlag, Berlin, Heidelberg (2007).
  4. M. Faraday, Philos. Trans. R. Soc. London, 147, 145 (1857). https://doi.org/10.1098/rstl.1857.0011
  5. The Royal Institution of Great Britain, http://www.rigb.org/rimain/heritage/faradaypage.jsp (2008).
  6. Z. Bredig, Angew. Chem. 11, 951 (1898).
  7. Donau, Monatsh 25, 525 (1905).
  8. Z. Zsigmondy, Phys. Chem. 56, 65 (1906).
  9. G. Mie, Ann. Phys. 25, 377 (1908).
  10. R. Gans, Ann. Phys. 31, 881 (1911); 47, 270 (1915).
  11. K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation p. 511, Wiley-VCH, Weinheim (1992).
  12. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982). https://doi.org/10.1103/PhysRevLett.49.57
  13. G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930
  14. T. Pradeep, Nano: The Essentials, p. 4, Tata McGraw Hill, NewDelhi (2007).
  15. H. Gleiter, Proc. Second Risoe International symposiym on Metallurgy and Materials Science (Ed.) N. Hansen et al. p. 15, Risoe Nat Lab, Roskilde (1981).
  16. K. Eric Drexler, Engine of Creation: The Coming Era of Nanotechnology, Anchor Books, USA (1986).
  17. H. Gleiter, Nanostructured Mater. 6, 3 (1995) https://doi.org/10.1016/0965-9773(95)00025-9
  18. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989). https://doi.org/10.1016/0079-6425(89)90001-7
  19. R. W. Siegel, Annu. Rev. Mater. Sci. 21, 559 (1991). https://doi.org/10.1146/annurev.ms.21.080191.003015
  20. A. C. Pierre, Introduction to Sol-Gel Processing, p.11, Kluwer Academic Publishers, Boston (1998).
  21. B. E. Yoldas, J. Mater. Sci. 21, 1080 (1986). https://doi.org/10.1007/BF01117398
  22. C. J. Brinker and J. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, p. 2, Academic Press, Boston, London (1990).
  23. C. J. Brinker, K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay, and C. S. Ashley, J. Non-Cryst. Solids 63, 45 (1984). https://doi.org/10.1016/0022-3093(84)90385-5
  24. R. K. Iler, The Chemistry of Silica, p. 334, Wiley, New York (1979).
  25. S. Utamapanya, K. J. Klabunde, and J. R. Schlup, Chem. Mater. 3, 175 (1991). https://doi.org/10.1021/cm00013a036
  26. P. Guo, P. Chen, and Minghua Liu, Nanoscale Res. Lett. 6, 529 (2011). https://doi.org/10.1186/1556-276X-6-529
  27. C. Koch, Ann. Rev. Mater. Sci. 19, 121 (1989). https://doi.org/10.1146/annurev.ms.19.080189.001005
  28. B. S. Murty and S. Ranganathan, Int. Mater. Rev. 43, 101 (1998). https://doi.org/10.1179/095066098790105654
  29. M. Sherif El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, p. 8, Noyes publications, USA (2001).
  30. L. E. Burs, J. Chem. Phys. 79, 5566 (1983)
  31. L. E. Burs, J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1063/1.447218
  32. S. Ramasamy and B. Purniah, in "Nanomaterials", edited by D. Chakravorty, p. 85, Indian National Science Academy, New Delhi (2001).
  33. A. Tschope, J. Y. Ying, and H. L. Tuller, Sens. Actuators B, 31, 111 (1996). https://doi.org/10.1016/0925-4005(96)80025-6
  34. R. N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel, and T. Nagarajan, Nanostruct. Mater. 6, 993 (1995). https://doi.org/10.1016/0965-9773(95)00229-4
  35. L. M. Levinson and H. R. Philip, Ceram. Bull. 65, 639 (1986).
  36. C. Suryanarayana and C. C. Koch, Hyperfine Interactions 130, 5 (2000).
  37. K. Lu, Y. Z. Wang, W. D. Wei, and Y. Y. Li, Adv. Cryog. Mater. 38, 285 (1991).
  38. X. D. Liu, B. Z. Ding, Z. Q. Hu, K. Lu, and Y. Z. Wang, Physica B 192, 345 (1993). https://doi.org/10.1016/0921-4526(93)90009-U
  39. M. Gratzel, Nature 414, 338 (2001). https://doi.org/10.1038/35104607
  40. C. Alejandro, UD-led Team Sets Solar Cell Record, Joins DuPont on $100 million project, http://www.udel.edu/PR/UDaily/2008/jul/solar072307.html (2008).
  41. B. O'Regan and M. Gratzel, Nature 335, 737 (1991).
  42. K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002). https://doi.org/10.1016/S0927-0248(01)00110-6
  43. R. S. Mane, C. D. Lokhande, and S. H. Han, Solar Energy 80, 185 (2006). https://doi.org/10.1016/j.solener.2005.08.013
  44. P. Guo and M. A. Aegerter, Thin Solid Films 351, 290 (1999). https://doi.org/10.1016/S0040-6090(99)00215-1
  45. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994). https://doi.org/10.1021/j100063a022
  46. F. T. Kong, S. Y. Dai, and K. J. Wang, Adv. in Opto Elec., Article ID 75384 (2007).
  47. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005).
  48. J. H. Park, T. W. Lee, and M. G. Kang, Chem. Commun. 25, 2867 (2008).
  49. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry- Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, J. Am. Chem. Soc. 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  50. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, and M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005). https://doi.org/10.1021/ja052467l
  51. P. Wang, S. M. Zakeeruddin, R. H. Baker, J. E. Moser, and M. Grätzel, Adv. Mater. 15, 2101 (2003). https://doi.org/10.1002/adma.200306084
  52. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nature Mater. 2, 402 (2003). https://doi.org/10.1038/nmat904
  53. C. Klein, M. K. Nazeeruddin, P. Liska, and M. Gratzel, Inorg. Chem. 44, 178 (2005). https://doi.org/10.1021/ic048810p
  54. M. K. Nazeeruddin, Q. Wang, L. Cevey, and M. Gratzel, Inorg. Chem. 45, 787 (2006). https://doi.org/10.1021/ic051727x
  55. P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Gratzel, Adv. Mater., 16, 1806 (2004). https://doi.org/10.1002/adma.200400039
  56. D. Kuang, S. Ito, B. Wenger, and M. Gratzel, J. Am. Chem. Soc, 128, 4146 (2006). https://doi.org/10.1021/ja058540p
  57. D. Kuang, C. Klein, H. J. Snaith, and M. Gratzel, Nano Letters 6, 769 (2006). https://doi.org/10.1021/nl060075m
  58. K. J. Jiang, N. Masaki, J. B. Xia, S. Noda, and S. Yanagida, Chem. Commun. 23, 2460 (2006).
  59. P. Wang, C. Klein, and J. E. Moser, J. Phys. Chem. B 108, 17553 (2004). https://doi.org/10.1021/jp046932x
  60. M. Gratzel, J. Photochem. Photobio. C: Photochem. Rev. 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  61. K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, Chem. Lett. 5, 471 (1997).
  62. U. Bach, D. Lupo, P. Comte, and M. Gratzel, Nature 395, 583 (1998). https://doi.org/10.1038/26936
  63. B. O'Regan and D. Swartz, J. Appl. Phys. 80, 4749 (1996). https://doi.org/10.1063/1.363412
  64. M. Gratzel, Curr. Appl. Phys. 6S1, e2 (2006).
  65. K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and P. M. Srimannae, Semicond. Sci. Technol. 10, 1689 (1995). https://doi.org/10.1088/0268-1242/10/12/020
  66. K. Tennakone, G. R. R. A. Kumara, I. R. M. kottegoda, K. G. U. Wijayantha, and V. P. S. Perera, J. Phys. D: Appl. Phys. 31, 1492 (1998). https://doi.org/10.1088/0022-3727/31/12/014
  67. A. Fujishima and X. T. Zhang, Proc. Jpn. Acad., Ser. B, 81, 33 (2005). https://doi.org/10.2183/pjab.81.33
  68. Y. Ren, Z. Zhang, E. Gao, S. Fang, and S. Cai, J. Appl. Electrochem. 31, 445 (2001). https://doi.org/10.1023/A:1017523901804
  69. D. Gebeyehu, C. J. Brabec, and N. S. Sariciftci, Thin Solid Films 403, 271 (2002).
  70. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, Nano Letters 2, 1259 (2002). https://doi.org/10.1021/nl025798u
  71. J. K. Kim, M. S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, Solid State Ionics 176, 579 (2005). https://doi.org/10.1016/j.ssi.2004.10.002
  72. N. Ikeda and T. Miyasaka, Chem. Commun. 14, 1886 (2005).
  73. H. Han, W. Liu, J. Zhang, and X. Z. Zhao, Adv. Func. Mater. 15, 1940 (2005). https://doi.org/10.1002/adfm.200500159
  74. M. S. Kang, J. H. Kim, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, Chem. Commun. 7, 889 (2005).
  75. G. P. Kalaignan, M. S. Kang, and Y. S. Kang, Solid State Ionics, 177, 1091 (2006). https://doi.org/10.1016/j.ssi.2006.03.013

Cited by

  1. Preparation of doping metal TiO2 particle/nanotube composite layer and their applications in dye-sensitized solar cells vol.19, pp.6, 2012, https://doi.org/10.1007/s12540-013-0640-2
  2. Enhancing the ionic transport of PEO-based composite polymer electrolyte by addition of TiO2 nanofiller for quasi-solid state dye-sensitized solar cells vol.19, pp.6, 2013, https://doi.org/10.1007/s12540-013-0643-z
  3. Effect of seed layer prepared under various heating conditions on growth of ZnO nanorod arrays for dye-sensitized solar cells vol.9, pp.3, 2012, https://doi.org/10.1007/s13391-013-2211-6
  4. Rare Earth Oxide Nanolayer Coating on ZnO Nanowires in Dye-Sensitized Solar Cells vol.52, pp.10, 2012, https://doi.org/10.7567/jjap.52.10mb26
  5. Effect of Photoelectrode with Phosphor-Containing TiO2Layer for Dye-Sensitized Solar Cells vol.52, pp.11, 2012, https://doi.org/10.7567/jjap.52.11nm03
  6. Effect of rapid thermal annealing on Zn/ZnO layers vol.24, pp.10, 2013, https://doi.org/10.1007/s10854-013-1363-3
  7. The Effect of Phosphor-TiO2Layer on the Performance of Dye-Sensitized Solar Cells vol.600, pp.1, 2012, https://doi.org/10.1080/15421406.2014.936770
  8. Effects of a Seed Layer and Sn Ion Modification on the ZnO Nanorods in Dye-Sensitized Solar Cells vol.602, pp.1, 2012, https://doi.org/10.1080/15421406.2014.944637
  9. Enhancing Photoelectrical Performance of Dye-Sensitized Solar Cell Using Phosphor Photoelectrode vol.602, pp.1, 2012, https://doi.org/10.1080/15421406.2014.944682
  10. Improving the performance of dye-sensitized solar cells by using the conversion luminescence of a phosphor vol.65, pp.10, 2012, https://doi.org/10.3938/jkps.65.1682
  11. Preparation of a Phosphor/TiO2 nanoparticle composite layer for applications in dye-sensitized solar cells vol.65, pp.3, 2014, https://doi.org/10.3938/jkps.65.387
  12. Influence of a PbS layer on the optical and electronic properties of ZnO@PbS core–shell nanorod thin films vol.3, pp.23, 2012, https://doi.org/10.1039/c5tc00826c
  13. Time-Domain Ab Initio Modeling of Photoinduced Dynamics at Nanoscale Interfaces vol.66, pp.None, 2012, https://doi.org/10.1146/annurev-physchem-040214-121359
  14. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells vol.68, pp.12, 2012, https://doi.org/10.3938/jkps.68.1399
  15. Nonadiabatic charge dynamics in novel solar cell materials vol.7, pp.3, 2012, https://doi.org/10.1002/wcms.1305
  16. Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells vol.7, pp.45, 2012, https://doi.org/10.1039/c7ra03599c
  17. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/5323164
  18. Semi-industrial Green Mechanochemical Syntheses of Solar Cell Absorbers Based on Quaternary Sulfides vol.6, pp.2, 2018, https://doi.org/10.1021/acssuschemeng.7b03563
  19. Investigation on the Thickness Effect of TiO2 Photo- Anode on Dye-Sensitized Solar Cell Performance vol.280, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/ssp.280.76
  20. Potentiodynamic Electrodeposition of CoSe2 Films and Their Excellent Electrocatalytic Activity as Counter Electrodes for Dye-Sensitized Solar Cells vol.166, pp.10, 2012, https://doi.org/10.1149/2.1201910jes
  21. Effects of physical orientation of dye molecules and molecular orbitals on performance of solid-state dye sensitized solar cells vol.23, pp.1, 2012, https://doi.org/10.1016/j.matpr.2019.06.189
  22. Structural, Optical, and Photocatalytic Properties of ZnSe Nanoparticles Influenced by the Milling Time vol.11, pp.9, 2021, https://doi.org/10.3390/cryst11091125
  23. Anodic synthesis of TiO2 nanotubes by step-up voltages vol.55, pp.25, 2012, https://doi.org/10.1177/00219983211023791