DOI QR코드

DOI QR Code

Influence of Precooling Cooling Air on the Performance of a Gas Turbine Combined Cycle

냉각공기의 예냉각이 가스터빈 복합발전 성능에 미치는 영향

  • Received : 2011.08.17
  • Accepted : 2011.11.09
  • Published : 2012.02.01

Abstract

Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state-of-the-art F-class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off-design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

고온부에 해당하는 터빈 노즐과 로터의 냉각은 가스터빈의 성능에 큰 영향을 미친다. 본 연구에서는 냉각 공기의 예냉각이 가스터빈과 복합화력 발전 성능에 미치는 영향을 알아보았다. 계산에 사용된 모델은 F-Class 가스 터빈이며 냉각을 고려한 터빈의 구성요소를 사용해 냉각공기의 변화에 대해 보다 정확한 모사를 구사하였다. 냉각공기의 예냉각에 따른 가스터빈의 성능변화를 나타내기 위해 탈설계 해석이 수행되었다. 노즐 및 로터의 냉각에 따른 성능 변화를 보다 정확하게 나타내기 위해 열역학적 냉각모델과 속도삼각형을 고려한 모델이 고려되었다. 또한 복합발전의 경우 냉각공기에서 추출된 열을 하부사이클에서 회수하여 스팀터빈을 구동하는데 추가적인 열을 공급하는 시스템이 구성되었다. 복합발전 시스템의 모든 냉각공기의 온도를 200K 예냉각하는 경우에 주유동가스의 유량증가로 인해 약 1.78%의 출력 증가를 나타내었으며 동일한 터빈 입구온도 유지를 위한 연료소모의 증가로 효율은 0.70% 포인트 감소하였다.

Keywords

References

  1. Horlock, J. H., 2001, "The Basic Thermodynamics of Turbine Cooling," Journal of Turbomachinery, Vol. 123, pp. 583-592. https://doi.org/10.1115/1.1370156
  2. Young, J, B. and Horlock, J, H., 2006, "Defining the Efficiency of a Cooled Turbine," Journal of Turbomachinery, Vol. 128, pp. 658-667. https://doi.org/10.1115/1.2218890
  3. Horlock, J. H. and Torbidoni, L., 2008, "Calculations of Cooled Turbine Efficiency," Journal of Engineering for Gas Turbines and Power, Vol. 130, 011703. https://doi.org/10.1115/1.2771250
  4. Kawaike, K., Kobayashi, N. and Ikeguchi, T., 1984, "Effect of New Blade Cooling System With Minimized Gas Temperature Dilution on Gas Turbine Performance," Journal of Engineering for Gas Turbines and Power, Vol. 106, pp. 756-764. https://doi.org/10.1115/1.3239635
  5. Horlock, J. H., Watson, D. T. and Jones, T. V., 2001, "Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows," Journal of Engineering for Gas Turbines and Power, Vol. 123, pp. 487-494 https://doi.org/10.1115/1.1373398
  6. Torbidoni, L. and Horlock, J, H., 2005, "A New Method to Calculate the Coolant Requirements of a High-Temperature Gas Turbine Blade," Journal of Turbomachinery, Vol. 127, pp. 191-199. https://doi.org/10.1115/1.1811100
  7. Jordal, K., Torbidoni, L. and Massardo, A. F., 2001, "Convective Blade Cooling Modeling for the Analysis of Innovative Gas Turbine Cycles," ASME Paper No.2001-GT-0390.
  8. Kwon, I. H., Kang, D. W., Kim, T. S. and Sohn, J. L., 2010, "Influences of Cooling Air Temperature and Flow Rate Variations on Gas Tubine Performance," Proceedings of the KSME 2010 Spring Annual Meeting, pp. 9-10.
  9. GateCycle ver. 6.0., 2006, Enter Software.
  10. Farmer, R., 2009, Gas Turbine World 2009 GTW Handbook, Vol. 27, Pequot Prblishing Inc., pp. 75.
  11. Kim, Y. S., Lee, S. J., Kim, T. S., Sohn, J. L. and Joo, Y. J., 2010, "Performance Analysis of a Syngas-fed Gas Turbine Considering the Operating Limitations of its Components," Applied Energy, Vol. 87, pp. 1602-1611. https://doi.org/10.1016/j.apenergy.2009.09.021
  12. Cohn, A. and Waters, M., 1982, "The Effect of Alternative Cooling Schemes on the Performance of Utility Gas Turbine Power Plants," ASME paper, 82-JPGC-GT-19, pp. 1-10.
  13. Saravanamuttoo, HIH., Rogers, GFC. and Cohen, H., 2001, Gas Turbine Theory 5th edition, Pearson Education Limited, England, pp. 306-373.
  14. Moustapha, H., Zelesky, M. F., Banies, N. C. and Japikse, D., 2003, Axial and Radial Turbines, Concepts NREC, USA, pp. 1-29.