DOI QR코드

DOI QR Code

Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery

실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가

  • Kim, Eun-Ji (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2011.10.27
  • Accepted : 2011.11.21
  • Published : 2012.01.27

Abstract

Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

Keywords

References

  1. M. Yamada, A. Ueda, K. Matsumoto and T. Ohzuku, J. Electrochem. Soc., 158(4), A417 (2011). https://doi.org/10.1149/1.3551539
  2. S. Bourderau, T. Brousse and D. M. Schleich, J. Power Sourc., 81-82, 233 (1999). https://doi.org/10.1016/S0378-7753(99)00194-9
  3. T. Takamura, S. Ohara, M. Uehara, J. Suzuki and K. Sekine, J. Power Sourc., 129, 96 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.014
  4. L. B. Chen, J. Y. Xie, H. C Yu and T. H. Wang, J. Appl Electrochem., 39, 1157 (2009). https://doi.org/10.1007/s10800-008-9774-1
  5. S. Nishida, K. Nakagawa, M. Iwane, Y. Iwasaki, N. Ukiyo, M. Mizutani and T. Shoji, Sol. Energ. Mater. Sol. Cell., 65, 525 (2001). https://doi.org/10.1016/S0927-0248(00)00136-7
  6. J. K. Saha, K. Haruta, M. Yeo, T. Koabayshi and H. Shirai, Sol. Energ. Mater. Sol. Cell., 93, 1154 (2009). https://doi.org/10.1016/j.solmat.2009.03.001
  7. Y. Cui and C. M. Lieber, Science, 291, 851 (2001). https://doi.org/10.1126/science.291.5505.851
  8. Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Letters, 3, 149 (2003). https://doi.org/10.1021/nl025875l
  9. M. Kittler, T. Arguirov, W. Seifert, X. Yu, G. Jia, O. F. Vyvenco, T. Mchedlidze, M. Reiche, J. Sha and D. Yang, Mater. Sci. Eng. C, 27, 1252 (2007). https://doi.org/10.1016/j.msec.2006.09.034
  10. P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Roberson, W. I. Milne, Physica E, 38, 64 (2007). https://doi.org/10.1016/j.physe.2006.12.054
  11. S. -H. Lee, K. -J. Moon, S. -H. Hwang, T. -I. Lee, J. -M. Myoung, Kor. J. Mater. Res., 21, 115 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.2.115
  12. A. K. Agrawal and A. E. Austin, J. Electrochem. Soc., 128, 2292 (1981). https://doi.org/10.1149/1.2127237
  13. C. H. Lee and F. A. Kroger, J. Electrochem. Soc., 129, 936 (1982). https://doi.org/10.1149/1.2124069
  14. J. Gobet and H. Tannenberger, J. Electrochem. Soc., 135, 109 (1988). https://doi.org/10.1149/1.2095532
  15. Y. Katayama, M. Yukumoto and T. Miura, Electrochem. Solid State Lett., 6(5), A96 (2003). https://doi.org/10.1149/1.1566213
  16. S. Zein El Abedin, N. Borissenko and F. Endres, Electrochem. Comm., 6, 510 (2004). https://doi.org/10.1016/j.elecom.2004.03.013
  17. Y. Nishimura and Y. Fukunaka, Electrochim. Acta, 53, 111 (2007). https://doi.org/10.1016/j.electacta.2007.06.026
  18. Y. Nishimura, Y. Fukunaka, T. Nishida, T. Nohira and R. Hagiwara, Electrochem. Solid State Lett., 11, D75 (2008) https://doi.org/10.1149/1.2952190
  19. T. Munisamy and A. J. Bard, Electrochm. Acta, 55, 3797 (2010). https://doi.org/10.1016/j.electacta.2010.01.097
  20. H. -C. Shin, J. A. Corno, J. L. Gole and M. Liu, J. Power Sourc., 139, 314 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.073
  21. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause and J. R. Dahn, Electrochem. Solid State Lett., 4, A137 (2001). https://doi.org/10.1149/1.1388178

Cited by

  1. Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis vol.26, pp.5, 2016, https://doi.org/10.3740/MRSK.2016.26.5.258