DOI QR코드

DOI QR Code

Hepatoprotective Effect of Curdrania tricuspidata Extracts against Oxidative Damage

산화적 손상에 대한 꾸지뽕나무 잎, 열매 및 줄기 추출물의 간세포 보호효과

  • Received : 2011.10.14
  • Accepted : 2011.11.21
  • Published : 2012.01.31

Abstract

We investigated the antioxidant and hepatoprotective effects of extracts from the leaves, stems, and fruit of Cudrania tricuspidata (CT) against $H_2O_2$ or ethanol-induced oxidative damage. The total polyphenol and flavonoid content was the highest in the 80% ethanol extracts from the leaves of the plant (CTL80). Also, the radical scavenging activity of DPPH and ABTS in the CTL80 was significantly higher than that of the non-treated control. To determine the hepatoprotective effects of CT in $H_2O_2$ and ethanol-induced oxidative damage, cell viability was measured using an XTT assay. Pre-treatment of CTL80 significantly increased cell viability compared with the non-treated control cells by 71.21% and 80.40%, respectively. The data suggests that CTL80 exhibits hepatoprotective antioxidant effects. Therefore, CTL80 may be considered a potential agent to control $H_2O_2$ or ethanol-induced liver damage.

본 연구에서는 산화적 스트레스에 의한 간 손상 개선 소재 개발을 위하여 꾸지뽕나무 각 부위별(잎, 줄기, 열매), 용매별(80% 에탄올, 10% 에탄올, 물) 추출물의 항산화 활성 및 간세포 보호효과를 측정하였다. 총 폴리페놀 함량과 플라보노이드 함량은 꾸지뽕 잎 80% 에탄올 추출물에서 가장 높게 나타났으며, 부위별로는 잎>줄기>열매 순이었고, 추출용매별로는 80% 에탄올>10% 에탄올>물 추출물 순으로 나타났다. DPPH 라디칼 소거능과 ABTS 라디칼 소거능 또한 잎80% 에탄올 추출물이 가장 높았으며, HepG2 세포에서 $H_2O_2$로 유도된 산화적 손상에 대해서는 꾸지뽕 잎 80% 에탄올 추출물만 유의적으로 높은 세포보호활성을 나타내었으며, HepG2/2E1 세포에서 알코올로 유도된 산화적 손상에 대한 각 부위별, 용매별 추출물의 간세포보호효과 또한 꾸지뽕잎 80% 에탄올 추출물이 가장 높게 나타났다. 부위별로는 잎>줄기>열매 순이었고, 추출 용매별로는 꾸지뽕 잎의 경우 80% 에탄올>10% 에탄올>물 순이었으며, 줄기와 열매의 경우는 용매별로 유의적인 차이가 나타나지 않았다. 이상의 결과로부터 꾸지뽕나무 잎 추출물은 우수한 항산화활성을 가질 뿐만 아니라 $H_2O_2$와 알코올로 유도된 간 손상으로부터 간세포 보호활성을 보임을 확인하였다. 이에 꾸지뽕나무 잎 추출물은 산화적 스트레스에 의한 간 손상으로부터 간세포 보호효과를 갖는 기능성 소재로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Cederbaum AI, Lu Y, Wu D. 2009. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83: 519-548. https://doi.org/10.1007/s00204-009-0432-0
  2. Caro AA, Cederbaum AI. 2004. Oxidative stress, toxicology, and pharmacology of CYP2E1. Ann Rev Pharmacol Toxicol 44: 27-42. https://doi.org/10.1146/annurev.pharmtox.44.101802.121704
  3. An CS, Jin HL, Jeon YH, Bak JP, Kim JD, Yoon JH, Lim BO. 2010. Immunoregulatory effects of water extracts of Inonotus obliquus in carbon tetrachloride-induced liver damage animal model. Korean J Medicinal Crop Sci 18: 1-8.
  4. Nieva MM, Sanpietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  5. Papa S, Skulachev VP. 1997. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174: 305-319. https://doi.org/10.1023/A:1006873518427
  6. Cho SH, Choi YJ, Rho CW, Choi CY, Kim DS, Cho SH. 2008. Reactive oxygen species and cytotoxicity of bamboo (Phyllostachys pubescens) sap. Korean J Food Preserv 15: 105-110.
  7. Reddy BS, Reddy RK, Reddy BP, Ramakrishna S, Diwan PV. 2008. Potential in vitro antioxidant and protective effects of Soymida febrifuga on ethanol induced oxidative damage in HepG2 cells. Food Chem Toxicol 46: 3429-3442. https://doi.org/10.1016/j.fct.2008.08.034
  8. Wallace DC. 1992. Mitochondria genetics: a paradigm for aging and degenerative diseases? Science 256: 628-632. https://doi.org/10.1126/science.1533953
  9. Mari M, Cederbaum AI. 2001. Induction of catalase, alpha, and microsomal glutathione S-transferase in CYP2E1 overexpressing HepG2 cells and protection against shortterm oxidative stress. Hepatology 33: 652-661. https://doi.org/10.1053/jhep.2001.22521
  10. You Y, Jung KY, Lee YH, Jun W, Lee BY. 2009. Hepatoprotective effects of Hovenia dulcis fruit on ethanol-induced liver damage in vitro and in vivo. J Korean Soc Food Sci Nutr 38: 154-159. https://doi.org/10.3746/jkfn.2009.38.2.154
  11. Cederbaum AI. 2006. CYP2E1--biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt Sinai J Med 73: 657-672.
  12. Lu Y, Cederbaum AI. 2008. CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 44: 723-738. https://doi.org/10.1016/j.freeradbiomed.2007.11.004
  13. Kim JY, Chung JH, Hwang I, Kwan YS, Chai JK, Lee KH, Han TH, Moon JH. 2009. Quantification of quercetin and kaempferol contents in different parts of Cudrania tricuspidata and their processed foods. Kor J Hort Sci Technol 27: 489-496.
  14. Choi SR, You DH, Kim JY, Park CB, Kim DH, Ryu J. 2009. Antioxidant activity of methanol extracts from Curdrania tricuspidata Bureau according to harvesting parts and time. Korean J Med Crop Sci 17: 115-120.
  15. Joo HY, Lim KT. 2009. Protective effect of glycoprotein isolated from Cudrania tricuspidata on liver in $CCl_4$-treated A/J mice. Korean J Food Sci Technol 41: 93-99.
  16. Kim HJ, Cha JY, Choi MR, Cho YS. 2000. Antioxidative activities of Morus alba and Cudrania tricuspidata. J Korean Soc Agric Chem Biotechnol 43: 148-152.
  17. Park JC, Choi JS, Choi JW. 1995. Effects of the fractions from the leaves, fruits, stems and roots of Cudrania tricuspidata and flavonoids on lipid peroxidation. Kor J Pharmacogn 26: 377-384.
  18. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  19. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Lim YM, Kim BR, Hong KY. 2008. Antioxidant effect of Crataegi Fructus extract on the oxidative stress of reactive oxygen species in cultured human skin fibroblasts. Kor J Ori Physiol Pathol 22: 115-119.
  22. Lee JS, Han GC, Han GP, Nobuyuki K. 2007. The antioxidant activity and total polyphenol content of Cudrania tricuspidata. J East Asian Soc Dietary Life 17: 696-702.
  23. Sanchez-Moreno C. 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8: 121-137. https://doi.org/10.1177/1082013202008003770
  24. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984.
  25. Chon IJ. 2003. Anti-oxidant compounds of Cudrania tricuspidata leaves. Master Thesis. Chungang University, Seoul, Korea.
  26. Lee YM, Bae JH, Jung HY, Kim JH, Park DS. 2011. Antioxidant activity in water and methanol extracts from Korean edible wild plants. J Korean Soc Food Sci Nutr 40: 29-36. https://doi.org/10.3746/jkfn.2011.40.1.029
  27. Loft S, Astrup A, Buemann B, Poulsen HE. 1994. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J 8: 534-537. https://doi.org/10.1096/fasebj.8.8.8181672
  28. Lee SS, Buters JT, Pineau T, Fernandez-Salguero P. 1996. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271: 12063-12067. https://doi.org/10.1074/jbc.271.20.12063
  29. Lee YH, Lee J, Im EJ, Jun W, Cho HY. 2009. Modulation of ethanol-induced P450 enzyme activities and antioxidants in mice by Hordeum vulgare extract. J Korean Soc Food Sci Nutr 38: 1347-1352. https://doi.org/10.3746/jkfn.2009.38.10.1347
  30. Kahraman A, Cakar H, Koken T. 2011. The protective effect of quercetin on long-term alcohol consumption-induced oxidative stress. Mol Biol Rep (Epub).

Cited by

  1. Hepatoprotective effect of 10% ethanolic extract from Curdrania tricuspidata leaves against ethanol-induced oxidative stress through suppression of CYP2E1 vol.108, 2017, https://doi.org/10.1016/j.fct.2017.08.007
  2. Antioxidant and Angiotensin Converting Enzyme I Inhibitory Activities of Extracts from Mulberry (Cudrania tricuspidata) Fruit subjected to Different Drying Methods vol.41, pp.10, 2012, https://doi.org/10.3746/jkfn.2012.41.10.1388
  3. Study of the Antioxidant and Alcohol-degrading Enzyme Activities of Soybean Sprout Sugar Solutions vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.581
  4. Physiological Activities of Cudrania tricuspidata Extracts (Part I) vol.14, pp.8, 2013, https://doi.org/10.5762/KAIS.2013.14.8.3907
  5. Topical Application of Cudrania tricuspidata Stem Extract Inhibits Atopic Dermatitis-Like Skin Lesions in an NC/Nga Mouse Model: An Experimental Animal Study vol.07, pp.08, 2016, https://doi.org/10.4236/pp.2016.78044
  6. In Vitro Hepatoprotective Effects of Fermented Curcuma longa L. by Aspergillus oryzae against Alcohol-Induced Oxidative Stress vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.812
  7. Anti-Inflammatory and Gastroprotective Activities ofCudrania TricuspidataLeaf Extract Against Acute HCl/Ethanol-Induced Gastric Mucosal Injury in Sprague-Dawley Rats vol.39, pp.5, 2015, https://doi.org/10.1111/jfbc.12149
  8. Anti-wrinkle Activity of a Curdrania tricuspidata Extract on Ultraviolet-induced Photoaging vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.608
  9. 꾸지뽕나무 추출물의 피부 생리 활성 vol.32, pp.2, 2012, https://doi.org/10.12925/jkocs.2015.32.2.260
  10. 엉겅퀴의 항산화 활성 및 손상된 흰쥐 간세포(BNL CL.2)에 대한 간 보호 효과 vol.27, pp.4, 2017, https://doi.org/10.5352/jls.2017.27.4.442
  11. 두릅 아세트산 에틸 분획물의 산화방지 효과 및 알코올에 대한 간세포 보호효과 vol.50, pp.2, 2018, https://doi.org/10.9721/kjfst.2018.50.2.216
  12. 토종과 중국도입종간 꾸지뽕잎의 항알레르기작용 비교 vol.34, pp.3, 2012, https://doi.org/10.6116/kjh.2019.34.3.9
  13. 산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과 vol.53, pp.1, 2020, https://doi.org/10.5657/kfas.2020.0123
  14. Evaluation of Antioxidant Activity of Cudrania tricuspidata (CT) Leaves, Fruit Powder and CT Fruit in Pork Patties during Storage vol.40, pp.6, 2012, https://doi.org/10.5851/kosfa.2020.e56
  15. 만성 알코올 유발 마우스 간손상 및 지방 축적에 대한 제주조릿대잎 에틸 아세테이트 분획물의 간 보호 효과 vol.60, pp.4, 2012, https://doi.org/10.14405/kjvr.2020.60.4.215