DOI QR코드

DOI QR Code

The Effect of Insoluble Dietary Fiber Extracted from Chinese Cabbage Waste on Plasma Lipid Profiles in Rats Fed a High Fat Diet

배추 폐기물로부터 분리한 불용성 식이섬유가 고지방 식이를 급여한 쥐의 혈중 지질농도에 미치는 영향

  • Liu, Wenli (Dept. of Food Engineering, Mokpo National University) ;
  • Ko, Kang-Hee (Solar Salt and Halophyte R&D Center, Mokpo National University) ;
  • Kim, Hag-Ryeol (Solar Salt and Halophyte R&D Center, Mokpo National University) ;
  • Kim, In-Cheol (Dept. of Food Engineering, Mokpo National University)
  • 유문려 (목포대학교 식품공학과) ;
  • 고강희 (목포대학교 천일염 및 염생식물 산업화사업단) ;
  • 김학렬 (목포대학교 천일염 및 염생식물 산업화사업단) ;
  • 김인철 (목포대학교 식품공학과)
  • Received : 2011.05.12
  • Accepted : 2011.12.27
  • Published : 2012.01.31

Abstract

This study investigated the lipid profiles for the possible improving activity of insoluble dietary fiber extracted from cabbage waste discarded during kimchi manufacture and market distribution. Enzyme-treated Insoluble Dietary Fiber (EIDF) is the remnants of crude dietary fiber (CDF) treated by ${\alpha}$-amylase, protease, and amyloglucosidase after removal of soluble materials from cabbage waste. The insoluble dietary fiber of CDF and EIDF in cabbage waste was $65.33{\pm}0.33%$ and $73.57{\pm}0.09%$, respectively. To examine the effects of EIDF on plasma cholesterol concentration, two group of rats were fed either a high fat diet (HFD) or a HFD containing 0.1~1.0% EIDF for 4 weeks. The body weight of all groups was not significantly different (p<0.05) but the body weight of EIDF+HFD groups was less than that of the HFD group (p<0.1). Compared with the HFD group, EIDF also lowered serum levels of total triglycerides to 11.2~23.3% and cholesterol to 26.8~28.5%. In EIDF+HFD groups, the HDL-cholesterol level increased by 7.2~26.1%, while LDL-cholesterol especially decreased by 51.0~61.4% and VLDL-cholesterol by 16.9~26.4%. The atherogenic index of EIDF+HFD groups was also reduced twice that of the HFD group. From these results, EIDF from cabbage waste could be a potential effective food ingredient for improving lipid profiles.

농산물 유통과정 및 김치 제조과정 중 발생하는 배추 폐기물의 이용성을 확대하기 위해 이로부터 불용성 식이섬유를 분리하고 혈중 콜레스테롤 저하능을 확인하였다. 배추폐기물을 $121^{\circ}C$/15분 조건에서 추출한 다음, 수용성 물질은 제거하고 남은 박에 전분 및 단백질 분해효소를 처리하여 효소처리된 불용성 식이섬유 분말(EIDF)을 제조하였다. 고지혈증 및 동맥경화에 미치는 영향을 알아보기 위해 고지방 식이에 0.1~1%의 EIDF를 첨가하여 이를 흰쥐에 4주 동안 공급하였다. 체중증가량에 대해 p<0.05 수준에서는 유의적인 차이를 확인할 수 없었으나 p<0.1 수준에서는 고지방 식이를 한 경우보다 EIDF를 첨가한 군의 체중이 낮았다. 또한 EIDF는 혈중 중성지방 및 총 콜레스테롤, LDL-콜레스테롤, VLDL-콜레스테롤의 수준을 낮췄으며, HDL-콜레스테롤 함량은 증가시켜 동맥경화지수가 낮은 것으로 확인되었다. 특히 EIDF를 투여함에 따라 LDL-콜레스테롤 함량을 2주째 에 66.7%~72.8%, 4주째에 45.1%~56.5%까지 낮춰 배추 폐기물에서 추출한 불용성 식이섬유의 혈중 콜레스테롤 저하능이 우수한 것을 평가할 수 있었으며, 이를 이용하여 부가 가치가 높은 건강기능보조식품으로의 활용이 기대된다.

Keywords

References

  1. Kim SH, Yang JY, Kang SA, Chun HK, Park KY. 2007. Current state and improvement for Korean kimchi industry. Food Industry and Nutrition 12: 7-13.
  2. Nilnakara S, Chiewchan N, Devahastin S. 2009. Production of antioxidant dietary fibre powder from cabbage outer leaves. Food Bioprod Process 87: 301-307. https://doi.org/10.1016/j.fbp.2008.12.004
  3. Han ES, Seok MS. 1996. Improvement of Chinese cabbage salting process in Kimchi industry. Food Industry and Nutrition 1: 50-70.
  4. Choi MH, Park YH. 1998. Production of yeast using Chinese cabbage salting waste water in Kimchi factory. Agric Chem Biotechnol 41: 331-336.
  5. Yoon HH, Lee SY. 2003. Quality characteristics of baechu Kimchi salted with recycled wastebrine. Korean J Soc Food Cookery Sci 19: 609-615.
  6. Yoon HH, Kim DM. 2002. Effects of filtration on the characteristics of reused waste brine in Kimchi manufacturing. Korean J Food Sci Technol 34: 444-448.
  7. Yoon HH, Jeon EJ, Sung SJ, Kim DM. 2000. Characteristics of waste brine from the salting process of Chinese cabbage. Korean J Food Sci Technol 32: 97-101.
  8. Park KY, Ha JO, Rhee SH. 1996. A study on the contents of dietary fibers and crude fiber in kimchi ingredients and kimchi. J Korean Soc Food Nutr 25: 69-75.
  9. Wennberg M, Nyman M. 2004. On the possibility of using high pressure treatment to modify physico-chemical properties of dietary fibre in white cabbage (Brassica oloeracea var. capitata). Innovative Food Sci Emerging Technol 5: 171-177. https://doi.org/10.1016/j.ifset.2004.02.002
  10. DeVries JW. 2001. The definition of dietary fiber. Cereal Foods World 46: 112-126.
  11. Sin HJ, Kim KO, Kim SH, Kim YA, Lee HS. 2010. Effect of resistant starch on the large bowel environment and plasma lipid in rats with loperamide-induced constipation. J Korean Soc Food Sci Nutr 39: 684-691. https://doi.org/10.3746/jkfn.2010.39.5.684
  12. Kendall CWC, Esfahani A, Jenkins DJA. 2010. The link between dietary fibre and human health. Food Hydrocolloid 24: 42-48. https://doi.org/10.1016/j.foodhyd.2009.08.002
  13. Bach Knudsen KE. 2001. The nutritional significance of dietary fibre analysis. Anim Feed Sci Tech 90: 3-20. https://doi.org/10.1016/S0377-8401(01)00193-6
  14. Slavin JL. 2001. Dietary fibre and colon cancer. In Handbook of Dietary Fibre. Cho SS, Dreher ML, eds. Marcel Dekker Inc, New York, NY, USA. p 31-45.
  15. Perez-Jimenez J, Serrano J, Tabernero M, Arranz S, Diaz-Rubio E, Garcia-Diz L, Goni I, Saura-Calixto F. 2008. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 24: 646-653. https://doi.org/10.1016/j.nut.2008.03.012
  16. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 777-781.
  17. KFDA. 2005. Food code . Korea Food and Drug Administration, Seoul, Korea. p 34-37.
  18. Reeves PG, Nielsen FH, Fahey GC. 1993. AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition Ad Hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951. https://doi.org/10.1093/jn/123.11.1939
  19. Friedewald WT, Levy RI, Fedreison DS. 1979. Estimation of concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  20. Hlomes DT, Frohlich J, Buhr K. 2008. The concept of precision extended to the atherogenic index of plasma. Clin Biochem 41: 631-635. https://doi.org/10.1016/j.clinbiochem.2008.01.023
  21. Han JS, Han YB. 1994. The effect of high fat diet and dietary fiber on lipid metabolism in rats. J Korean Soc Food Nutr 23: 541-547.
  22. Jang SJ, Park YJ. 1995. Effects of dietary fiber sources and levels on lipid metabolism in rats fed high lard diet. Korean J Nutr 28: 107-114.
  23. Hsu PK, Chien PJ, Chen CH, Chau CF. 2006. Carrot insoluble fibre-rich fraction lowers lipid and cholesterol absorption in hamsters. Lebensm-Wiss Technol 39: 337-342.
  24. Lecumberri E, Goya L, Mateos R, Alía M, Ramos S, Izquierdo-Pulido M, Bravo L. 2007. A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 23: 332-341. https://doi.org/10.1016/j.nut.2007.01.013
  25. Zhang XH, Choi SK, Seo JS. 2010. Effect of dietary grape pomace on lipid metabolism and hepatic morphology in rats fed a high fat diet. J Korean Soc Food Sci Nutr 39: 1595-1603. https://doi.org/10.3746/jkfn.2010.39.11.1595
  26. Kim AR, Lee JJ, Lee YM, Jung HO, Lee MY. 2010. Cholesterol-lowering and anti-obesity effects of Polymnia sonchifolia Poepp. & Endl. powder in rats fed a high fat-high cholesterol diet. J Korean Soc Food Sci Nutr 39: 210-218. https://doi.org/10.3746/jkfn.2010.39.2.210
  27. Nishimura N, Taniguchi Y, Kiriyama S. 2000. Plasma cholesterol lowering effect on rats of dietary fiber extracted from immature plants. Biosci Biotechnol Biochem 64: 2543-2551. https://doi.org/10.1271/bbb.64.2543
  28. Theuwissen E, Mensink RP. 2008. Water-soluble dietary fibers and cardiovascular disease. Physiolol Behav 94: 285-292. https://doi.org/10.1016/j.physbeh.2008.01.001
  29. Kay RM. 1982. Dietary fiber. J Lipid Res 23: 221-242.

Cited by

  1. Quality Characteristics of Commercial Kimchi Paste vol.33, pp.1, 2017, https://doi.org/10.9724/kfcs.2017.33.1.9
  2. Development of a Novel Medium with Chinese Cabbage Extract and Optimized Fermentation Conditions for the Cultivation of Leuconostoc citreum GR1 vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.1125
  3. Quality characteristics of common wheat fresh noodle with insoluble dietary fiber from kimchi by-product vol.85, 2017, https://doi.org/10.1016/j.lwt.2017.07.027
  4. Quality Characteristics of Gluten-free Frying Pre-mix with Insoluble Dietary Fiber Powder from Chinese Cabbage By-product vol.33, pp.2, 2017, https://doi.org/10.9724/kfcs.2017.33.2.155
  5. Feasibility of using kimchi by-products as a source of functional ingredients vol.59, pp.6, 2016, https://doi.org/10.1007/s13765-016-0227-y
  6. 김치공장부산물처리에 따른 아주까리유박의 퇴비화특성 및 시비효과 vol.25, pp.2, 2012, https://doi.org/10.17137/korrae.2017.25.2.49
  7. 김치공장 부산물 혼합처리에 따른 우분의 퇴비화특성 및 시비효과 vol.25, pp.3, 2017, https://doi.org/10.17137/korrae.2017.25.3.35
  8. Muffins enriched with dietary fiber from kimchi by‐product: Baking properties, physical–chemical properties, and consumer acceptance vol.7, pp.5, 2012, https://doi.org/10.1002/fsn3.1020
  9. Yield Optimization and Functionality of an Extract of Water-soluble Dietary Fiber and Solids from Opuntia ficus-indica Stems vol.23, pp.2, 2012, https://doi.org/10.13050/foodengprog.2019.23.2.81
  10. 빨간배추가 고지방식이를 급여한 렛트의 장기무게 및 혈청지질 수치에 미치는 영향 vol.32, pp.6, 2012, https://doi.org/10.9799/ksfan.2019.32.6.711
  11. Physicochemical Qualities and Physiological Activities of Black Soybeans by Cultivation Area and Cultivars vol.50, pp.1, 2012, https://doi.org/10.3746/jkfn.2021.50.1.29