DOI QR코드

DOI QR Code

Cherry Silverberry (Elaeagnus multiflora) Wine Mitigates the Development of Alcoholic Fatty Liver in Rats

보리수열매주의 알코올성 지방간 형성 억제 효과

  • Kim, Ju-Yeon (Dept. of Food and Nutrition, Changwon National University) ;
  • Nam, Kyung-Sook (Dept. of Food and Nutrition, Changwon National University) ;
  • Noh, Sang-K. (Dept. of Food and Nutrition, Changwon National University)
  • 김주연 (창원대학교 식품영양학과) ;
  • 남경숙 (창원대학교 식품영양학과) ;
  • 노상규 (창원대학교 식품영양학과)
  • Received : 2011.10.11
  • Accepted : 2011.11.16
  • Published : 2012.01.31

Abstract

Cherry silverberry (Elaeagnus multiflora) contains bioactive phenolics. This study was conducted to determine whether feeding cherry silverberry wine (CSW) to rats would alleviate the progress of alcoholic fatty liver. Adult male Sprague-Dawley rats were divided by weight into the following three groups. Two groups of rats were fed 6.7% ethanol or the caloric equivalent Lieber-DeCarli diet containing maltose-dextrin, and the other group an isocaloric Lieber-DeCarli diet containing CSW at the same ethanol level for 6 weeks. CSW's flavonoids, its antioxidant and free radical scavenging activities, serum transaminases, serum and hepatic lipids, and liver histology were examined. Our results showed that CSW exerted significant antioxidant and radical scavenging activities. The serum activities of alanine and aspartate transminases were markedly decreased by CSW at 6 weeks. Also, CSW feeding resulted in significant reductions in blood cholesterol and triglyceride. The development of alcoholic fatty liver was significantly delayed by lowering fat accumulation. Taken together, these results indicate that CSW may help protect the liver against alcoholic fatty liver by improving serum and hepatic lipid status. This may be associated with the protective effect of CSW on alcoholic fatty liver via bioactive phenolic compounds.

본 연구에서는 보리수 열매를 원료로 하여 만든 보리수열 매주의 항산화 활성을 조사하고, 흰쥐에 보리수열매주의 급여가 알코올 지방간 완화에 미치는 영향을 조사하였다. 알코올의 섭취로 지방간을 유도하기 위하여 Lieber-DeCarli 액체식이를 공급하였으며, 액체 표준식이만 공급받는 동물군을 대조군(control), 대조군과의 열량 차이를 에탄올로 보충한 액체식이를 공급받는 동물군을 에탄올군(ethanol), 에탄올 대신 보리수열매주를 혼합한 액체식이를 공급받는 동물군을 보리수열매주군(cherry silverberry wine, CSW)으로 6마리씩 3그룹으로 나누어 6주간 사육하였다. 실험 시작 전, 3주째, 그리고 6주째에 혈액을 채취하였고 간은 6주 혈액 채취직후 적출하였다. 보리수주의 총 페놀함량은 37.24 mg/100 mL, SOD 유사활성은 22.26%, DPPH 라디칼 소거능은 13.69 %로 나타났다. 혈액의 주요 지방간 표지자들의 농도는 대조군에 비해 에탄올군에서는 유의적으로 증가하였으나 보리수열매주군에서는 유의적으로 감소하였다. 대조군에 비해 에탄올군의 간은 지방구가 축적되어 비대해진 것을 확인할 수 있었으며, 보리수열매주군의 간은 지방구의 크기나 수가 대조군 수준으로 감소한 것으로 나타났다. 이와 유사하게 간조직의 총지방량 농도도 보리수열매주군에서 유의적으로 감소하였다. 본 실험을 통해 보리수열매주가 알코올 섭취로 증가된 혈중 지질 수준과 간기능 지표 수준을 개선시키는 효과를 나타냈으며 간조직에 지방간 형성이 유의적으로 억제하는 것을 간조직 분석을 통해 확인하였다. 이는 보리수열매에 함유되어 있는 다양한 피토케미칼 성분의 항산화 효과로 인해 알코올에 의한 간 손상을 보호하는데 기여할 수 있음을 나타낸 결과로 사료된다.

Keywords

References

  1. http://kostat.go.kr/portal/korea/kor_ko/5/2/index.board?bmode=read&aSeq=179513
  2. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. 2002. Mechanisms of hepatotoxicity. Toxicol Sci 65: 166-176. https://doi.org/10.1093/toxsci/65.2.166
  3. Cha YS, Sachan DS. 1994. Opposite effects of dietary saturated and unsaturated fatty acids on ethanol-pharmacokinetics, triglycerides and carnitines. J Am Coll Nutr 13: 338-343. https://doi.org/10.1080/07315724.1994.10718419
  4. Suresh MV, Sreeranjit Kumar CV, Lal JJ, Indira M. 1999. Impact of massive ascorbic acid supplementation on alcohol induced oxidative stress in guinea pigs. Toxicol Lett 104: 221-229. https://doi.org/10.1016/S0378-4274(98)00377-4
  5. McDonough KH. 2003. Antioxidant nutrients and alcohol. Toxicology 189: 89-97. https://doi.org/10.1016/S0300-483X(03)00155-0
  6. Song JH, Lee HS, Hwang JK, Chung TY, Hong SR, Park KM. 2003. Physiological activities of Phelliuns ribis extracts. Korean J Food Sci Technol 35: 690-695.
  7. Kim NW, Joo EY, Kim SL. 2003. Analysis on the components of the fruit of Elaeagnus multiflora Thumb. Korean J Food Preserv 10: 534-539.
  8. Seeram NP. 2008. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56: 627-629. https://doi.org/10.1021/jf071988k
  9. Lee YS, Chang ZQ, Oh BC, Park SC, Shin SR, Kim NW. 2007. Antioxidant activity, anti-inflammatory activity, and whitening effects of extracts of Elaeagnus multiflora Thunb. J Med Food 10: 126-133. https://doi.org/10.1089/jmf.2006.145
  10. Lee MS, Lee YK, Park OJ. 2010. Cherry silver berry (Elaeagnus multiflora) extracts exert anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells. Food Sci Biotechnol 19: 1673-1677. https://doi.org/10.1007/s10068-010-0237-1
  11. Hong JY, Nam HS, Lee YS, Kim NW, Shin SR. 2006. Antioxidant activity of ethanol extracts from fruits of Elaeagnus multiflora Thumb. during maturation. Korean J Food Preserv 13: 643-648.
  12. Hong JY, Nam HS, Lee YS, Yoon KY, Kim NW, Shin SR. 2006. Study on the antioxidant activity of extracts from the fruit of Elaeagnus multiflora Thunb. Korean Food Preserv 13: 413-419.
  13. Chang ZQ, Park SC, Oh BC, Lee YS, Shin SR, Kim NW. 2006. Anti-platelet aggregation and anti-inflammatory activity for extracts of Elaeagnus multiflora. Korean J Med Crops Sci 14: 516-517.
  14. Oh SI, Lee MS. 2008. Antioxidative and cytotoxic effects of ethanol extracts from Elaeagnus multiflora. Korean J Food Nutr 21: 403-409.
  15. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  16. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhance the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50: 3010-3014. https://doi.org/10.1021/jf0115589
  17. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  18. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallo and a convenient assay for superoxide dismutase. Eur J Biochem 47: 467-474.
  19. Lieber CS, DeCarli LM. 1986. The feeding of ethanol in liquid diets. Alcohol Clin Exp Res 10: 550-553. https://doi.org/10.1111/j.1530-0277.1986.tb05140.x
  20. Loest HB, Noh SK, Koo SI. 2002. Green tea extract inhibits the lymphatic absorption of cholesterol and ${\alpha}$-tocopherol in ovariectomized rats. J Nutr 132: 1282-1288. https://doi.org/10.1093/jn/132.6.1282
  21. Folch PJ, Lees M, Sloane-Stanley GM. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  22. Agren JJ, Julkunen A, Penttilä I. 1992. Rapid separation of serum lipids for fatty acid analysis by a single aminopropyl column. J Lipid Res 33: 1871-1876.
  23. Noh SK, Koo SI, Jeon IJ. 1999. Estrogen replacement in ovariectomized rats increases the hepatic concentration and biliary secretion of alpha-tocopherol and polyunsaturated fatty acids. J Nutr Biochem 10: 110-117. https://doi.org/10.1016/S0955-2863(98)00090-4
  24. Slover HT, Lanze E. 1979. Quantitative analysis of food fatty acids by capillary gas chromatography. J Am Oil Chem Soc 56: 933-943. https://doi.org/10.1007/BF02674138
  25. Zaspel BJ, Csallany AS. 1983. Determination of alpha-tocopherol in tissues and plasma by high-performance liquid chromatography. Anal Biochem 130: 146-150. https://doi.org/10.1016/0003-2697(83)90661-9
  26. Liu JF, Huang CJ. 1995. Tissue ${\alpha}$-tocopherol retention in male rats is compromised by feeding diets containing oxidized frying oil. J Nutr 125: 3071-3080.
  27. Raheja RK, Kaur C, Singh A, Bhatia IS. 1973. New colorimetric method for the quantitative estimation of phospholipids without acid digestion. J Lipid Res 14: 695-697.
  28. Husain SR, Gillard J, Cullard P. 1987. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26: 2489-2491. https://doi.org/10.1016/S0031-9422(00)83860-1
  29. Choi Y, Yu KW, Han NS, Koh JH, Lee JS. 2006. Antioxidant activities and antioxidant compounds of commercial red wines. J Korean Soc Food Sci Nutr 35: 1286-1290. https://doi.org/10.3746/jkfn.2006.35.9.1286
  30. Koch O, Farre S, De Leo ME, Palozza P, Palazzotti B, Borrelo S, Palombini G, Cravero A, Galeotti T. 2000. Regulation of managanese superoxide dismutase (MnSOD) in chronic experimental alcoholism: effects of vitamin E-supplemented and-deficient diets. Alcohol Alcohol 35: 159-163. https://doi.org/10.1093/alcalc/35.2.159
  31. Lieber CS, DeCarli LM. 1974. An experimental model of alcohol feeding and liver injury in the baboon. J Med Prim 3: 153-163. https://doi.org/10.1159/000459999
  32. Burton-Freeman B. 2000. Dietary fiber and energy regulation. J Nutr 130: 272S-275S. https://doi.org/10.1093/jn/130.2.272S
  33. Sirtori CR, Lavati MR. 1995. Soy and cholesterol reduction: Clinical experience. J Nutr 125: 598S-605S.
  34. Shin CS, Rho SN. 2006. Effect of powder of small waterdropwort (Oenanthe javanica DC) and Brewer's yeast (Saccharomyces cerevisiae) on the liver function and serum lipid metabolism in alcohol-consumed rats. J East Asian Soc Dietary Life 16: 281-291.
  35. Dakeishi M, Iwate T, Ishil N, Murata K. 2004. Effects of alcohol consumption on hepatocellular injury in Japanese men. Tohoku J Exp Med 202: 31-39. https://doi.org/10.1620/tjem.202.31
  36. Shin HK, Seo YJ, Kim JY, Kim CS, Noh SK. 2007. Onion favorably affects serum markers of ethanol-induced fatty liver in rats. Korean J Food Preserv 14: 662-668.
  37. Yoon OH, Kang BT, Lee JW, Kim KO. 2008. Effect of plum wine on the lipid metabolism and lipid peroxidation of rats. J Korean Soc Food Sci Nutr 37: 422-427. https://doi.org/10.3746/jkfn.2008.37.4.422
  38. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C. 2009. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenol: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46: 624-632. https://doi.org/10.1016/j.freeradbiomed.2008.11.020
  39. Zhang XH, Choi SK, Seo JS. 2010. Effect of dietary grape pomace on lipid metabolism and hepatic morphology in rats fed a high fat diet. J Korean Soc Food Sci Nutr 39: 1595-1603. https://doi.org/10.3746/jkfn.2010.39.11.1595
  40. Lieber CS. 1994. Alcohol and the liver. Gastroenterology 106: 1085-1105. https://doi.org/10.1016/0016-5085(94)90772-2
  41. Anila L, Vijayalakshmi NR. 2002. Flavonoids from Emblica officinalis and Mongifera indica-effectiveness for dyslipidemia. J Ethnopharmacol 79: 81-87. https://doi.org/10.1016/S0378-8741(01)00361-0
  42. Kim KO, Lee HS. 2007. Effects of isoflavone-rich bean sprout on the lipid metabolism of the ethanol-treated rats. J Korean Soc Food Sci Nutr 36: 1544-1552. https://doi.org/10.3746/jkfn.2007.36.12.1544
  43. Seo HJ, Jeong KS, Lee MK, Park YB, Jung UJ, Kim HJ, Choi MS. 2003. Role of naringin supplement in regulation of lipid and ethanol metabolism in rats. Life Sci 73: 933-946. https://doi.org/10.1016/S0024-3205(03)00358-8
  44. Park HY, Park YK, Lee YS, Noh SK, Sung EG, Choi I. 2011. Effect of oral administration of water-soluble extract from citrus peel (Citrus unshiu) on suppressing alcohol-induced fatty liver in rats. Food Chem 30: 598-604.

Cited by

  1. Effects of Makgeolli and Makgeolli precipitate on Hepatotoxicity and Serum Lipid Content in Rats vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.282
  2. Protective Effect of Onion Wine on Alcoholic Fatty Liver in Rats vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.467
  3. 보리수 열매 식초 발효 중 이화학적 특성, phytochemical 함량 및 생리활성 변화 vol.24, pp.1, 2017, https://doi.org/10.11002/kjfp.2017.24.1.125
  4. Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과 vol.27, pp.11, 2012, https://doi.org/10.5352/jls.2017.27.11.1315