DOI QR코드

DOI QR Code

Self-Aligned Ni-P Ohmic Contact Scheme for Silicon Solar Cells by Electroless Deposition

  • Lee, Eun-Kyung (Materials Processing Division, Korea Institute of Materials Science) ;
  • Lim, Dong-Chan (Materials Processing Division, Korea Institute of Materials Science) ;
  • Lee, Kyu-Hwan (Materials Processing Division, Korea Institute of Materials Science) ;
  • Lim, Jae-Hong (Materials Processing Division, Korea Institute of Materials Science)
  • Published : 2012.08.20

Abstract

We report a Ni-P metallization scheme for low resistance ohmic contacts to n-type Si for silicon solar cells. As-deposited Ni-P contacts to n-type Si showed a specific contact resistance of $6.42{\times}10^{-4}{\Omega}{\cdot}cm^2$. The specific contact resistance decreased with increasing thermal annealing temperature. When the Ni-P contact was annealed at $600^{\circ}C$ for 30 min in ambient air, the specific contact resistance was greatly decreased, to $6.37{\times}10^{-5}{\Omega}{\cdot}cm^2$. The improved ohmic property was attributed to the decrease in the work function due to the formation of Ni-silicides from Ni in-diffusion during the thermal annealing process. Effects of the annealing process on the electrical and crystal properties of the contacts were investigated by means of various resistivity measurements (circular transmission line method (c-TLM), 4-point probe), glancing angle x-ray diffraction (GAXRD), and x-ray photoelectron spectroscopy (XPS).

Keywords

References

  1. M. W. Denhoff and N. Drolet, Sol. Energy Mater. Sol. Cells 93, 1499 (2009). https://doi.org/10.1016/j.solmat.2009.03.028
  2. M.-J. Kim, J.-D. Lee, M.-J. Kim, and S.-H. Lee, J. Kor. Phys. Soc. 24, 328 (2011).
  3. V. A. Chaudhari and C. S. Solanki, Sol. Energy Mater. Sol. Cells 9, 2094 (2010).
  4. C. Boulord, A. Kaminski, Y. Veschetti, and M. Lemiti, Mater. Sci. Eng.: B 165, 53 (2009). https://doi.org/10.1016/j.mseb.2008.10.039
  5. C. Boulord, A. Kaminski, B. Canut, S. Cardinal, and M. Lemiti, J. Elec. Chem. Soc. 157, H742 (2010). https://doi.org/10.1149/1.3391538
  6. H. Knauss, B. Terheiden, and P. Fath, Sol. Energy Mater. Sol. Cells 90, 3232 (2006). https://doi.org/10.1016/j.solmat.2006.06.047
  7. E. J. Lee, D. S. Kim, and S. H. Lee, Sol. Energy Mater. Sol. Cells 74, 65 (2002). https://doi.org/10.1016/S0927-0248(02)00049-1
  8. V. S. Miles and H. E. John, J. Elec. Chem. Soc. 104, 226 (1957). https://doi.org/10.1149/1.2428541
  9. M. Kohler, Etching in Microsystem Technology, p. 283, WILEYVCH, Weinheim, Germany (1999).
  10. M. A. T. Lenio, A. J. Lennon, A. Ho-Baillie, and S. R. Wenham, Sol. Energy Mater. Sol. Cells 94, 2102 (2010). https://doi.org/10.1016/j.solmat.2010.06.035
  11. A. O. A. Ohta, H. Yoshinaga, H. Murakami, D. Azuma, Y. Munetaka, S. Higashi, S. Miyazaki, T. Aoyama, K. Kosaka, and K. Shibahara, International Conference of Solid State of Device and Materials, p. 216, Yokohama, Japan (2006).
  12. G. S. Marlow and M. B. Das, Solid-State Electronics 25, 91 (1982). https://doi.org/10.1016/0038-1101(82)90036-3
  13. A. J. Willis and A. P. Botha, Thin Solid Films 146, 15 (1987). https://doi.org/10.1016/0040-6090(87)90335-X
  14. A. R. M. M. Hilali and B. To, Proceedings of the 14th Workshop on Crystalline Silicon Solar Cells and Modules, p. 254, Winter Park, CO, USA (2004).
  15. P. Peeters, G. V. D. Hoorn, T. Daenen, A. Kurowski, and G. Staikov, Electrochim. Acta 47, 161 (2001). https://doi.org/10.1016/S0013-4686(01)00546-1
  16. D. Kanama, S. T. Oyama, S. Otani, and D. F. Cox, Surf. Sci. 552, 8 (2004). https://doi.org/10.1016/j.susc.2004.01.038
  17. H. W. Nesbitt, D. Legrand, and G. M. Bancroft, Phys. Chem. Miner. 27, 357 (2000). https://doi.org/10.1007/s002690050265
  18. N. S. McIntyre and M. G. Cook, Anal. Chem. 47, 2208 (1975). https://doi.org/10.1021/ac60363a034
  19. D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, Appl. Phys. Lett. 75, 1736 (1999). https://doi.org/10.1063/1.124803
  20. S. Y. Tan, C.-W. Chen, I. T. Chen, and C.-W. Feng, Thin Solid Films 517, 1186 (2008). https://doi.org/10.1016/j.tsf.2008.06.087
  21. E. Bucher, S. Schulz, M. C. Lux-Steiner, P. Munz, U. Gubler, and F. Greuter, Appl. Phys. A 40, 71 (1986). https://doi.org/10.1007/BF00616480
  22. J. Chastain, Handbook of X-Ray Photoelectron Spectroscopy, p. 84, Perkin-Elmer Corporation, Minnesota (1992).
  23. A. Kaminski, J. J. Marchand, and A. Laugier, Sol. Stat. Elec. 43, 741 (1999). https://doi.org/10.1016/S0038-1101(98)00338-4
  24. M. Wolf and H. Rauschenbach, Adv. En. Conv. 3, 455 (1963). https://doi.org/10.1016/0365-1789(63)90063-8

Cited by

  1. One-step synthesis of hybrid silver particles for front contact paste for crystalline silicon solar cells vol.9, pp.3, 2013, https://doi.org/10.1007/s13391-012-2215-7
  2. Selectivities of an all-wet-processed electrode film on ITO, ZnO, SiNx and doped Si for solar cell applications vol.65, pp.2, 2014, https://doi.org/10.3938/jkps.65.222
  3. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells vol.7, pp.2, 2012, https://doi.org/10.3390/ma7021318
  4. Characterization of electroless nickel as a seed layer for silicon solar cell metallization vol.38, pp.1, 2015, https://doi.org/10.1007/s12034-014-0828-1
  5. Selective metallization of solar cells vol.32, pp.1, 2012, https://doi.org/10.1108/mi-05-2014-0020
  6. Analysis of Ni/Cu Metallization to Investigate an Adhesive Front Contact for Crystalline-Silicon Solar Cells vol.19, pp.3, 2012, https://doi.org/10.3807/josk.2015.19.3.217
  7. Study of Nickel Silicide Formation and Associated Fill-Factor Loss Analysis for Silicon Solar Cells With Plated Ni-Cu Based Metallization vol.5, pp.6, 2012, https://doi.org/10.1109/jphotov.2015.2463741
  8. Use of antireflection layers to avoid ghost plating on Ni/Cu plated crystalline silicon solar cells vol.55, pp.3, 2012, https://doi.org/10.7567/jjap.55.036502
  9. Electrical parameters of solar cells with electrodes made by selective metallization vol.33, pp.1, 2012, https://doi.org/10.1108/mi-03-2015-0028
  10. 무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성 vol.49, pp.1, 2012, https://doi.org/10.5695/jkise.2016.49.1.54
  11. Selective metallization of silicon and ceramic substrates vol.36, pp.2, 2012, https://doi.org/10.1108/mi-01-2019-0006
  12. Influence of parameters inherent to ohmic contacts on properties of microwave avalanche transit-time diodes vol.22, pp.2, 2012, https://doi.org/10.15407/spqeo22.02.193