DOI QR코드

DOI QR Code

Dexmedetomidine-induced contraction of isolated rat aorta is dependent on extracellular calcium concentration

Ok, Seong-Ho;Bae, Sung-Il;Shim, Haeng-Seon;Sohn, Ju-Tae

  • Published : 20120900

Abstract

Background: Dexmedetomidine is a highly selective ${\alpha}_{2}$-adrenoceptor agonist that is widely used for sedation and analgesia during the perioperative period. Intravenous administration of dexmedetomidine induces transient hypertension due to vasoconstriction via the activation of the ${\alpha}_{2}$-adrenoceptor on vascular smooth muscle. The goal of this in vitro study is to investigate the calcium-dependent mechanism underlying dexmedetomidine-induced contraction of isolated endothelium-denuded rat aorta. Methods: Isolated endothelium-denuded rat thoracic aortic rings were suspended for isometric tension recording. Cumulative dexmedetomidine concentration-response curves were generated in the presence or absence of the following inhibitors: ${\alpha}_{2}$-adrenoceptor inhibitor rauwolscine; voltage-operated calcium channel blocker verapamil (5 ${\times}$ $10^{-7}$, $10^{-6}$ and 5 ${\times}$ $10^{-5}$ M); purported inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxydiphenylborate (5 ${\times}$ $10^{-6}$, $10^{-5}$ and 5 ${\times}$ $10^{-5}$ M); phospholipase C inhibitor U-73122 ($10^{-6}$ and 3 ${\times}$ $10^{-6}$ M); and store-operated calcium channel inhibitor gadolinium chloride hexahydrate ($GD^{3+}$; 5 ${\times}$ $10^{-6}$ M). Dexmedetomidine concentration-response curves were also generated in low calcium concentrations (1 mM) and calcium-free Krebs solution. Results: Rauwolscine, verapamil, and 2-aminoethoxydiphenylborate attenuated dexmedetomidine-induced contraction in a concentration-dependent manner. Low calcium concentrations attenuated dexmedetomidine-induced contraction, and calcium-free Krebs solution nearly abolished dexmedetomidine-induced contraction. However, U-73122 and $GD^{3+}$ had no effect on dexmedetomidine-induced contraction. Conclusions: Taken together, these results suggest that dexmedetomidine-induced contraction is primarily dependent on extracellular calcium concentrations that contribute to calcium influx via voltage-operated calcium channels of isolated rat aortic smooth muscle. Dexmedetomidine-induced contraction is mediated by ${\alpha}_{2}$-adrenoceptor stimulation. Dexmedetomidine-induced contraction appears to be partially mediated by calcium release from the sarcoplasmic reticulum.

Keywords

References

  1. Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Pro (Bayl Univ Med Cent) 2001; 14: 13-21. https://doi.org/10.1080/08998280.2001.11927725
  2. Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol 1988; 150: 9-14. https://doi.org/10.1016/0014-2999(88)90744-3
  3. Schmeling WT, Kampine JP, Roerig DL, Warltier DC. The effects of the stereoisomers of the alpha 2-adrenergic agonist medetomidine on systemic and coronary hemodynamics in conscious dogs. Anesthesiology 1991; 75: 499-511. https://doi.org/10.1097/00000542-199109000-00018
  4. Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. hemodynamic changes. Anesthesiology 1992; 77: 1134-42. https://doi.org/10.1097/00000542-199212000-00014
  5. Akata T. General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology 2007; 106: 365-91. https://doi.org/10.1097/00000542-200702000-00026
  6. Docherty JR. Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol 1998; 361: 1-15. https://doi.org/10.1016/S0014-2999(98)00682-7
  7. Peltonen JM, Pihlavisto M, Scheinin M. Subtype-specific stimulation of [35S]GTPgammaS binding by recombinant alpha2-adrenoceptors. Eur J Pharmacol 1998; 355: 275-9. https://doi.org/10.1016/S0014-2999(98)00518-4
  8. Kim JG, Sung HJ, Ok SH, Kwon SC, Cheon KS, Kim HJ, et al. Calcium sensitization involved in dexmedetomidine-induced contraction of isolated rat aorta. Can J Physiol Pharmacol 2011 [Epub ahead of print].
  9. Ok SH, Jeong YS, Kim JG, Lee SM, Sung HJ, Kim HJ, et al. C-Jun NH2-terminal kinase contributes to dexmedetomidine-induced contraction in isolated rat aortic smooth muscle. Yonsei Med J 2011; 52: 420-8. https://doi.org/10.3349/ymj.2011.52.3.420
  10. Kim HJ, Sohn JT, Jeong YS, Cho MS, Kim HJ, Chang KC, et al. Direct effect of dexmedetomidine on rat isolated aorta involves endothelial nitric oxide synthesis and activation of the lipoxygenase pathway. Clin Exp Pharmacol Physiol 2009; 36: 406-12. https://doi.org/10.1111/j.1440-1681.2008.05082.x
  11. Opie LH. Calcium channel antagonists. Part 1: Fundamental properties: mechanisms, classification, sites of action. Cardiovasc Drugs Ther 1987; 1: 411-30. https://doi.org/10.1007/BF02209083
  12. Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2004: 56: 439-513. https://doi.org/10.1124/pr.56.4.1
  13. Baik JS, Sohn JT, Ok SH, Kim JG, Sung HJ, Park SS, et al. Levobupivacaine- induced contraction of isolated rat aorta is calcium dependent. Can J Physiol Pharmacol 2011; 89: 467-76. https://doi.org/10.1139/y11-046
  14. Xu YJ, Tappia PS, Goyal RK, Dhalla NS. Mechanisms of the lysophosphatidic acid-induced increase in [Ca(2+)](i) in skeletal muscle cells. J Cell Mol Med 2008; 12: 942-54. https://doi.org/10.1111/j.1582-4934.2008.00139.x
  15. do C Borges NC, Mendes GD, Barrientos-Astigarraga RE, Galvinas P, Oliveira CH, De Nucci G. Verapamil quantification in human plasma by liquid chromatography coupled to tandem mass spectrometry. An application for bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 827: 165-72. https://doi.org/10.1016/j.jchromb.2005.07.012
  16. Vinet R, Brieva C, Pinardi G, Penna M. Influence of extracellular $Ca^{2+}$ on the modulation of alpha-adrenergic-induced contractions in rat aorta. Gen Pharmacol 1991; 22: 365-9. https://doi.org/10.1016/0306-3623(91)90465-I
  17. Parkinson NA, Hughes AD. The mechanism of action of alpha 2-adrenoceptors in human isolated subcutaneous resistance arteries. Br J Pharmacol 1995; 115: 1463-8. https://doi.org/10.1111/j.1476-5381.1995.tb16638.x
  18. ZhuGe R, Li S, Chen TH, Hsu WH. Alpha2-adrenergic receptormediated $Ca^{2+}$ influx and release in porcine myometrial cells. Biol Reprod 1997; 56: 1343-50. https://doi.org/10.1095/biolreprod56.5.1343
  19. Joshi MS, Ferguson TB Jr, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR Jr. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci U S A 2007; 104: 9982-7. https://doi.org/10.1073/pnas.0506824104
  20. Enkvist MO, Hamalainen H, Jansson CC, Kukkonen JP, Hautala R, Courtney MJ, et al. Coupling of astroglial alpha 2-adrenoreceptors to second messenger pathways. J Neurochem 1996; 66: 2394-401.
  21. Macrez-Lepretre N, Morel JL, Mironneau J. Effects of phospholipase C inhibitors on $Ca^{2+}$ channel stimulation and $Ca^{2+}$ release from intracellular stores evoked by alpha 1A- and alpha 2A-adrenoceptors in rat portal vein myocytes. Biochem Biophys Res Commun 1996; 218: 30-4. https://doi.org/10.1006/bbrc.1996.0006
  22. Nakasone J, Higuchi M, Miyagi K, Matsuzaki T, Noguchi K, Sakanashi M, et al. Comparison of contractile responses relative to protein between isolated diabetic and non-diabetic rat aortae to KCl and alpha-adrenoceptor agonists in different extracellular calcium concentrations. Arzneimittelforschung 2000; 50: 1078-83.
  23. Abebe W, Harris KH, MacLeod KM. Enhanced contractile responses of arteries from diabetic rats to alpha 1-adrenoceptor stimulation in the absence and presence of extracellular calcium. J Cardiovasc Pharmacol 1990; 16: 239-48. https://doi.org/10.1097/00005344-199008000-00010
  24. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated $Ca^{2+}$ entry but an inconsistent inhibitor of InsP3-induced $Ca^{2+}$ release. FASEB J 2002: 16: 1145-50. https://doi.org/10.1096/fj.02-0037rev
  25. Anttila M, Penttilä J, Helminen A, Vuorilehto L, Scheinin H. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol 2003; 56: 691-3. https://doi.org/10.1046/j.1365-2125.2003.01944.x
  26. Sakurai Y, Obata T, Odaka A, Terui K, Tamura M, Miyao H. Buccal administration of dexmedetomidine as a preanesthetic in children. J Anesth 2010; 24: 49-53. https://doi.org/10.1007/s00540-009-0863-z
  27. Zub D, Berkenbosch JW, Tobias JD. Preliminary experience with oral dexmedetomidine for procedural and anesthetic premedication. Paediatr Anaesth 2005; 15: 932-8. https://doi.org/10.1111/j.1460-9592.2005.01623.x
  28. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000; 93: 382-94. https://doi.org/10.1097/00000542-200008000-00016
  29. Shah S, Sangari T, Qasim M, Martin T. Severe hypertension and bradycardia after dexmedetomidine for radiology sedation in a patient with acute transverse myelitis. Paediatr Anaesth 2008; 18: 681-2. https://doi.org/10.1111/j.1460-9592.2008.02521.x
  30. Erkonen G, Lamb F, Tobias JD. High-dose dexmedetomidine-induced hypertension in a child with traumatic brain injury. Neurocrit Care 2008; 9: 366-9. https://doi.org/10.1007/s12028-008-9102-y

Cited by

  1. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/565271
  2. Mepivacaine attenuates vasodilation induced by ATP-sensitive potassium channels in rat aorta vol.94, pp.11, 2016, https://doi.org/10.1139/cjpp-2016-0041
  3. Dexmedetomidine-Induced Contraction Involves CPI-17 Phosphorylation in Isolated Rat Aortas vol.17, pp.10, 2012, https://doi.org/10.3390/ijms17101663
  4. Linolenic acid enhances contraction induced by phenylephrine in isolated rat aorta vol.890, pp.None, 2012, https://doi.org/10.1016/j.ejphar.2020.173662