DOI QR코드

DOI QR Code

Disposable Strip-type Sensors for Detection of Free Chlorine

유리염소 측정을 위한 일회용 스트립 센서

  • Received : 2012.11.16
  • Accepted : 2012.11.26
  • Published : 2012.11.30

Abstract

The measurement of residual chlorine as a disinfectant is very important to ensure the safety against the pathogenic microbes and to suppress injection. The portable free chlorine sensor was fabricated with a disposable strip format by a screen printing method. The strip sensors prepared with a carbon-Ag/AgCl(cathode-anode) combination exhibited less interfering responses towards combined chlorine species(especially $NHCl_2$) and oxygen than the sensors prepared with other metals(i.e., gold and platinum). Free chlorine was determined chronoamperometrically with carbon-based electrodes at an applied potential of -0.3 V(vs. Ag/AgCl). A channel was built on the strip-type electrode for easy sampling, and the resulting strip sensors were employed to determine the concentrations of residual free chlorine.

수질 분석에서 염소 소독제 잔류량 측정은 세균학적 안전성 확보와 염소의 과다 주입을 억제하기 위한 수단으로 매우 중요한 의미를 갖는다. 이러한 휴대용 잔류염소 측정기 개발을 위한 일회용 유리염소 스트립 센서를 스크린 프린팅 기술을 이용한 탄소 전극으로 제작하였다. 탄소 전극은 금과 백금 전극에 비해 결합염소(특히 $NH_2Cl$) 방해종에 대한 영향이 적었으며, -0.3 V(vs. Ag/AgCl) 인가전위에서 유리염소에 대해 안정한 감응성을 나타냈다. 이렇게 제작된 탄소 전극에 모세관현상으로 일정량의 시료를 재현성 있게 도입할 수 있는 유로구조를 갖는 일회용 스트립센서로 제작하였고, 잔류 유리염소의 분석에 적용하였다.

Keywords

References

  1. C. W. Geo, 'The handbook of chlorination and alternative disinfectants', 4th ed., John Wiley & Sons, New York (1999).
  2. R. L. Jolley, 'Water Chlorination: chemistry, environmental impact and health effects', vol. 6, Lewis, Chelsea (1990).
  3. V. L. Snoeyink and D. Jenkins, 'Water Chemistry', John Wiley & Sons, New York, p. 388 (1980).
  4. R. M. Clark and J. Q. Adams, 'Control of disinfection byproducts: Economic and technological considerations' Safety of water disinfection: Balancing chemical and microbial risks, G.E Craun ed., ILSI Press, Washington, D.C., p. 345 (1993).
  5. W. B. William, C. S. Lew and J. Y. Loh, 'Predictions of potential human health and ecological risks from power plant discharges of total residual chlorine and chloroform into rivers' Environ. Sci. Technol., 32, 2162 (1998). https://doi.org/10.1021/es970209l
  6. R. M. Clark and M. Silvaganesan, 'Predicting chlorine residuals and formation of TTHMs in drinking water' J. Envir. Engrg., 124, 1203 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1203)
  7. L. S. Clescerl, A. E. Greenberg and A. D. Eaton, 'Standard methods for the examination of water and wastewater', 20th ed., American Public Health Association Water Works Association, American Water Environment Federation, Washington, D.C. (1998).
  8. J. D. Johnson, J. W. Edwards and F. Keeslar, 'Chlorine residual measurement cell: The HOC1 membrane electrode' J. Am. Water Works Assoc., 70, 341 (1978).
  9. A. N. Tsaousis and C. O. Huber, 'Flow-injection amperometric determination of chlorine at a gold electrode' Anal. Chim. Acta, 178, 319 (1985). https://doi.org/10.1016/S0003-2670(00)86283-2
  10. J. F. Coetzee and G. Guarantue, 'Potentiometric gas sensor for the determination of free chlorine in static or flow injection analysis systems' Anal. Chem., 58, 650 (1986). https://doi.org/10.1021/ac00294a037
  11. W. Matuszewski and M. Trojanowicz, 'Selective flowinjection determination of residual chlorine at low levels by amperometric detection with two polarized platinum electrodes' Anal. Chim. Acta, 207, 59 (1988). https://doi.org/10.1016/S0003-2670(00)80782-5
  12. D. Pletcher and E. M. Valdes, 'Studies of a microelectrode sensor for monitoring chlorine in water supplies' Anal. Chim. Acta, 246, 267 (1991). https://doi.org/10.1016/S0003-2670(00)80960-5
  13. A. van den Berg, M. Koudelka-Hep, B. H. van der Shoot and N. F. de Rooij, 'Silicon-based chlorine sensor with on-wafer deposited chemically anchored diffusion membrane: Part I. Basic sensor concept' Anal. Chim. Acta, 269, 75 (1992). https://doi.org/10.1016/0003-2670(92)85135-S
  14. A. van den Berg, A. Grisel, E. Verney-Norberg, B. H. van der Shoot, M. Koudelka-Hep and N. F. de Rooij, 'On-wafer fabricated free-chlorine sensor with ppb detection limit for drinking-water monitoring' Sens. Actuators B, 13-14, 396 (1993).
  15. H. Shekhar, V. Chathapuram, S. H. Hyun, S. Hong and H. J. Cho, 'A disposable microsensor for continuous monitoring of free chlorine in water' Proc. IEEE sensors, 1, 67 (2003).
  16. B. S. Tiin and D. W. Margerum, 'Non-metal redox kinetics: reactions of trichloramine with ammonia and with dichloramine' Inorg. Chem., 29, 2135 (1990). https://doi.org/10.1021/ic00336a020
  17. C. J. Jafvert and R. L. Valentine, 'Reaction scheme for the chlorination of ammoniacal water' Environ. Sci. Technol., 26, 577 (1992). https://doi.org/10.1021/es00027a022
  18. P. K. Wrona, 'Electrode Processes of Chloramines in. Aqueous Solutions' J. Electroanal. Chem., 453, 197 (1998). https://doi.org/10.1016/S0022-0728(98)00193-4

Cited by

  1. Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy vol.17, pp.2, 2014, https://doi.org/10.5229/JKES.2014.17.2.119