DOI QR코드

DOI QR Code

Effect of Planting Date, Temperature on Plant Growth, Isoflavone Content, and Fatty Acid Composition of Soybean

파종기 및 온도처리가 콩의 생육 및 Isoflavone 함량과 지방산 조성에 미치는 영향

  • 정건호 (농촌진흥청 국립식량과학원) ;
  • 이재은 (농촌진흥청 국립식량과학원) ;
  • 김율호 (농촌진흥청 국립식량과학원) ;
  • 김대욱 (농촌진흥청 국립식량과학원) ;
  • 황태영 (농촌진흥청 국립식량과학원) ;
  • 이광식 (농촌진흥청 국립식량과학원) ;
  • 이병무 (동국대학교 생명과학과) ;
  • 김홍식 (충북대학교 농업생명환경대학 식물자원학과) ;
  • 권영업 (농촌진흥청 국립식량과학원) ;
  • 김선림 (농촌진흥청 국립식량과학원)
  • Received : 2012.08.10
  • Accepted : 2012.11.06
  • Published : 2012.12.31

Abstract

Soybean, C.V. Daewonkong, was planted on 25 May and 25 June in 2011, and four temperature gradient, control (ambient temperature in field plot), control + $3^{\circ}C$, control + $4^{\circ}C$, and control + $5^{\circ}C$, were artificially created by controlling the green house system. The obtained results indicated that vegetative growth of soybean plant was beneficially facilitated by planting on May (PM) than planting on June (PJ). The 100-seed weight was significantly higher in PM, and positively affected by increasing temperature, whereas the weight was reduced in control + $5^{\circ}C$ plot. Isoflavone content and fatty acid composition were analyzed to determine the effects of plating date and growth temperature. Isoflavone content was higher in PJ plot ($1479.8{\mu}g/g$) than in PM plot ($1201.8{\mu}g/g$), however, the influence of growth temperature varied with planting date. The composition of oleic acid was positively affected by increasing temperature, whereas the proportions of linoleic and linolenic acid were reduced. The numbers of node was considered as a major variable in the regression equations estimated using forward stepwise regression analysis for isoflavone content and unsaturated fatty acid under different environmental conditions.

콩의 파종시기 및 생육온도를 달리하였을 때 생육반응, 수량성 및 isoflavone 함량과 지방산 조성에 미치는 영향을 검토하여 밭작물의 안정생산을 위한 재배기술개발에 활용하고자 수행된 연구결과를 요약하면 다음과 같다. 1. 5월파종구는 6월파종구에 비해 콩 식물체의 생육이 왕성하고 식물체의 수분함량이 개화후 약 40일까지 비교적 높은 상태가 유지되지만, 6월파종구는 개화 후 등숙이 빠르게 진행되면서 식물체의 수분함량이 개화후 30일부터 급격히 감소되었다. 2. 6월 파종구는 5월 파종구에 비해 100립중이 상대적으로 감소하였고, 생육온도가 높으면 100립중이 증대되었으나 control + $5^{\circ}C$에서는 오히려 감소되어 파종시기 및 생육온도별 등숙 반응이 달랐다. 3. Isoflavone 함량은 5월파종구의 평균이 $1201.8{\mu}g/g$이었으나 6월파종구는 $1479.8{\mu}g/g$으로 5월파종구 대비 약 $278{\mu}g/g$ 함량이 높았다. 생육온도에 따라서는 5월파종구 Mc + $3^{\circ}C$ 및 Mc + $4^{\circ}C$ 처리구는 isoflavone 함량이 증가되었으나, Mc + $5^{\circ}C$의 isoflavone 함량은 오히려 낮았고, 6월파종구는 생육온도가 높을수록 isoflavone 함량이 감소하여 파종시기별 온도처리 효과가 달랐다. 4. 생육온도가 높을수록 oleic acid의 조성이 증가되고 linoleic 및 linolenic acid가 감소되었으나 palmitic 및 stearic acid의 조성도 생육온도가 높아질수록 증가되는 경향이었다. 5. 주경절수는 isoflavone 함량 및 불포화지방산 조성에 모두 관여하는 변수로 나타났는데, 주경절수와 isoflavone 함량과의 상관분석 결과 부의 상관관계(r = -0.661)가 있었고, 불포화지방산과는 정의 상관관계(r = 0.775)를 보여 주경절수가 증가되면 isoflavone 함량이 낮아지고 불포화지방산의 조성비율의 증가에 관여하는 형질로 판단되었다.

Keywords

References

  1. Kang, K. K., D. B. Lee, and Y. E. Na. 2011. RDA Interrobang 17. www.rda.go.kr.
  2. Aussenac, T., S. Lacombe, and J. Dayde. 1998. Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: Effects of variety and environment. Am. J. Clin. Nutr. 68: 480S-1485S.
  3. Beuerlein, J. and A. Dorrance. 2005. Chapter 5: Soybean production. Ohio Agronomy Guide, 14th Edition, Bulletin 472-05.
  4. Bilyeu, K. D., L. Palavalli, D. A. Sleper, and P. R. Beuselinck. 2003. Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci. 43 : 1833-1838. https://doi.org/10.2135/cropsci2003.1833
  5. Carver, B. F., J. W. Burton, T. E. Jr. Carter, and R. F. Wilson. 1986. Response to environmental variation of soybean lines selected for altered unsaturated fatty acid composition, Crop Sci. 26 : 1176-1191. https://doi.org/10.2135/cropsci1986.0011183X002600060021x
  6. Cho, J. W. and T. Yamakawa. 2008. Comparison of dry matter production and photosynthetic rate against different planting dates between late and early maturing soybean cultivars in paddy field. J. Fac. Agr., Kyushu Univ., 53 (2) : 389-393.
  7. Custodio, R. P. T., T. Shiraiwa, K. Homma, E. Kumagai, and R. Sameshima. 2012. The response of soybean seed growth characteristics to increased temperature under near-field conditions in a temperature gradient chamber. Field Crops Research. 131 : 26-31. https://doi.org/10.1016/j.fcr.2012.02.006
  8. Dornbos, Jr., D. L. and R. E. Mullen. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. 1992. J. Am. Oil Chem. Soc. 69 : 228-231. https://doi.org/10.1007/BF02635891
  9. Duthion, C. and A. Pigeaire. 1991. Seed Lengths corresponding to the final stage in seed abortion of three grain Legumes. Crop Sci., 31 : 1579-1583. https://doi.org/10.2135/cropsci1991.0011183X003100060040x
  10. Eldridge, A. C. and W. F. Kwolek. 1983. Soybean isoflavones: Effect of environment and variety on composition. J Agric Food Chem. 31 : 394-396. https://doi.org/10.1021/jf00116a052
  11. Gibson, L. R. and R. E. Mullen. 1996. Soybean seed quality reductions by high day and night temperature. Crop Sci., 36 : 1615-1619. https://doi.org/10.2135/cropsci1996.0011183X003600060034x
  12. Howell, R. W. and F. I. Collins. 1957. Factors affecting linolenic and linoleic acid content of soybean oil, Agron. J. 49 : 593-597. https://doi.org/10.2134/agronj1957.00021962004900110007x
  13. Howell, R. W. and J. L. Cartter. 1958. Physiological factors affecting composition of soybeans: ii. Response of oil and other constituents of soybeans to temperature under controlled conditions, Agron. J. 50 : 664-667. https://doi.org/10.2134/agronj1958.00021962005000110007x
  14. Huxley, P. A., R. J. Summerfied, and P. Hughes. 1976. Growth and development of soybean CV-TK5 as affected by tropical day lengths, day/night temperatures and nitrogen nutrition. Ann. Apply. Biol., 82 : 117-133. https://doi.org/10.1111/j.1744-7348.1976.tb01679.x
  15. Kim, S. H., W. S. Jung, J. K. Ahn, J. A. Kim, and I. M. Chung. 2005. Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, $CO_{2}$ level and N application. J. Sci. Food Agric. 85 : 2557-2566. https://doi.org/10.1002/jsfa.2294
  16. Kitamura. K., K. Igita, A. Kikuchi. S. Kudou, and K. Okubo. 1991. Low isoflavone content in some early maturing cultivars, so-called "summer-type soybeans" (Glycine max (L) Merrill). Japan. J. Breed. 41 : 651-654. https://doi.org/10.1270/jsbbs1951.41.651
  17. Liu, K. S. 1996. Soybeans : chemistry, technology and utilization. Chapman and Hall, New York, p. 4.
  18. Lozovaya V. V., A. V. Lygin, A. V. Ulanov, R. L. Nelson, J. Dayde, and J. M. Widhohn. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 45 : 1934-1940. https://doi.org/10.2135/cropsci2004.0567
  19. Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie. 2005. The effect of temperature during the reproductive period on development of reproductive organs and the occurrence of delayed stem senescence in soybean. Jpn. J. Crop Sci. 74 : 339-343. https://doi.org/10.1626/jcs.74.339
  20. Molteni, A., L. Brizio-Molteni, and V. Persky. 1995. In vitro hormonal effects of soybean isoflavones. J. Nutrition. 125 : 751-756.
  21. Monje, M. C. M. Berger, V. Farines, K. Reybier, A. Verger, J. Dayde, V. Theodorou, and F. Nepveu. 2006. Antioxidant capacity of cotyledons and germs of soybean in relation to their isoflavone content. Food Technol. Biotechnol. 44(4) : 493-498.
  22. Munier-Jolain, N. G. and B. Ney. 1998. Seed growth rate in grain legumes II. Seed growth rate depends on cotyledon cell number. J. Exp. Bot. 49 : 1971-1976. https://doi.org/10.1093/jxb/49.329.1971
  23. Rasolohery, C. A., M. Berger, A. V. Lygin, V. V. Lozovaya, R. L. Nelson, and J. Dayde. 2008. Effect of temperature and water availability during late maturation of the soybean seed on germ and cotyledon isoflavone content and composition. J. Sci. Food Agric. 88 : 218-228. https://doi.org/10.1002/jsfa.3075
  24. Rennie, B. D. and J. W. Tanner. 1989. Fatty acid composition of oil from soybean seeds grown at extreme temperatures. J. Am. Oil Chem. Soc. 66 : 1622-1624. https://doi.org/10.1007/BF02636189
  25. Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20 : 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  26. Roger W. E. and A. D. Flowerday. 1984. Soybean panting date: when and why. University of Nebraska-Lincoln, File G687 under: Field Crops 0A-6, Soybeans.
  27. Sakai, T., A. Kikuchi, H. Shimada, Y. Takada, Y. Kono, and S. Shimada. 2005. Evaluation of isoflavone contents and compositions of soybean seed and its relation with seeding time. Jpn. J. Crop Sci. 74(2) : 156-164. https://doi.org/10.1626/jcs.74.156
  28. Seguin P., W. J. Zheng, D. L. Smith, and W. H. Deng. 2004. Isoflavone content of soybean cultivars grown in eastern Canada. J. Sci. Food Agric. 84 : 1327-1332. https://doi.org/10.1002/jsfa.1825
  29. Sionit, N., B. R. Strain, and E. P. Flint. 1987. Interaction of temperature and $CO_{2}$ enrichment on soybean: Growth and dry matter partitioning. Can. J. Plant Sci., 67 : 59-67. https://doi.org/10.4141/cjps87-007
  30. Thomas, J. M. G., K. J. Boote, L. H. Allen, Jr., M. Gallo- Meagher, and J. M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed germination and transcript abundance. Crop Sci. 43 : 1548-1557. https://doi.org/10.2135/cropsci2003.1548
  31. Thomas, J. M. G., K. J. Boote, D. Dan, and L. H. Allen. 2010. Elevated temperature delays onset of reproductive growth and reduces seed growth rate of soybean. J. Agrocrop Sci. 1 : 19-32.
  32. Tikkanen, M. J. and H. Adlercreutz. 2000. Dietary soy-derived isoflavone phytoestrogens: Could they have a role in coronary heart disease prevention?. Biochem. Pharmacol. 60 : 1-5. https://doi.org/10.1016/S0006-2952(99)00409-8
  33. Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, and K. Okubo. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43 : 1184-1192. https://doi.org/10.1021/jf00053a012
  34. United Nations Environmental Programme. 2006. Crop production in a changing climate. In: GEO year book 2006. http://www. unep.org/geo/yearbook/yb2006/063.asp.
  35. Wilcox, J. R. and J. F. Cavins. 1992. Normal and low linolenic acid soybean strains : response to planting date, Crop Sci. 32 : 1248-1251. https://doi.org/10.2135/cropsci1992.0011183X003200050037x
  36. Wolf, R. B., J. F. Canvins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents; oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 59 : 230-232. https://doi.org/10.1007/BF02582182
  37. Yue, X., A. A. Moursy, and Z. Xu. 2010. Distribution of isoflavones and antioxidant activities of soybean cotyledon, coat and germ. J. Food Proc. Pres. 34(5) : 795-806. https://doi.org/10.1111/j.1745-4549.2009.00395.x
  38. Zheng, S., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5(3) : 215-218. https://doi.org/10.1626/pps.5.215

Cited by

  1. Influence of Seed-filling Temperature on the Seed Quality and Water Soaking Properties of Soybean vol.58, pp.3, 2013, https://doi.org/10.7740/kjcs.2013.58.3.308
  2. Variation of Bio-active Substance of Major Soybean Cultivars by Different Sowing Time in Southern Korea vol.59, pp.1, 2014, https://doi.org/10.7740/kjcs.2014.59.1.038
  3. Protein, Fatty acid, and Isoflavone Contents of Soybean Lines Tolerant to Acid Soil vol.30, pp.3, 2018, https://doi.org/10.12719/KSIA.2018.30.3.167
  4. $CO_2$농도와 온도 상승에 따른 백태와 서목태(Glycine max (L.) Merrill)의 식물계절학 및 번식생태학적 반응 vol.28, pp.6, 2014, https://doi.org/10.13047/kjee.2014.28.6.634
  5. 노화가속화 조건에서 저장 기간에 따른 귀리의 기능성 성분 및 항산화 활성 변화 vol.63, pp.2, 2018, https://doi.org/10.7740/kjcs.2018.63.2.149