DOI QR코드

DOI QR Code

Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique

  • Anantasook, N. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Wanapat, M. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2011.05.06
  • Accepted : 2011.07.26
  • Published : 2012.03.01

Abstract

The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6${\times}$4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected $NH_3-N$ and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and $CH_4$ production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology.

Keywords

References

  1. Animut, G., A. L. Goetsch, R. Puchala, A. K. Patra, T. Sahlu, V. H. Varel and J. Wells. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144:212-227. https://doi.org/10.1016/j.anifeedsci.2007.10.014
  2. AOAC. 1990. Official methods of analyses, 15th edn. Assoc. Offic. Anal. Chem, Arlington, VA.
  3. Barry, T. M. 1983. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 3.3Rates of body and wool growth. Br. J. Nutr. 54:211-217. https://doi.org/10.1079/BJN19850106
  4. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. https://doi.org/10.3168/jds.2008-1441
  5. Burns, R. E. 1971. Method for estimation of tannin in the grain sorghum. J. Agron. 163:511-512.
  6. Chanthakhoun, V., M. Wanapat, C. Wachirapakorn and S. Wanapat. 2011. Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livest. Sci. :10.1016/j.livsci.2011.02.003.
  7. Cherdthong, A., M. Wanapat, P. Kongmun, R. Pilajan and P. Khejornsart. 2010. Rumen fermentation, Microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667-1675. https://doi.org/10.3923/javaa.2010.1667.1675
  8. De Semet, S., D. I. Demeyer and C. J. van Nevel. 1992. Effect of defaunation and hay:concentrate ratio on fermentation, fibre digestion and passage in the rumen of sheep. J. Anim. Feed Sci. Technol. 37:333-344. https://doi.org/10.1016/0377-8401(92)90016-Y
  9. Denman, S. E., N. Tomkins and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In: 2nd International Symposium on Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). p. 112 ETH Zurich, Switzerland.
  10. Evans, J. D. and S. A. Martin. 2000. Effects of thymol on ruminal micro-organisms. J. Current Microbiol. 41:336-340. https://doi.org/10.1007/s002840010145
  11. Field, J. A., S. Kortekaas and G. Lettinga. 1989. The tannin theory of methanogenic toxicity. Biol. Wastes 29:241-262. https://doi.org/10.1016/0269-7483(89)90016-5
  12. Franzolin, R. and B. A. Dehority. 1996. Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. J. Anim. Sci. 74:2803-2809.
  13. Galyean, M. 1989. Laboratory Procedures in Animal Nutrition Research. New Mexico State University.
  14. George, W. S. and R. E. Craig. 2006. Samanea saman (rain tree). Species Profiles for Pacific Island Agroforestry.
  15. Grainger, C., T. Clarke, M. J. Auldist, K. A. Beauchemin, S. M. McGinn, G. C. Waghorn and R. J. Eckard. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 89:241-251. https://doi.org/10.4141/CJAS08110
  16. Hess, H. D., T. T. Tiemann, F. Noto, J. E. Carulla and M. Kruezer. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. In greenhouse gases and animal agriculture: an update. In: International Congress Series No. 1293 (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). Elsevier, The Netherlands, pp. 164-167.
  17. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  18. Jouany, J. P. and B. Lassalas. 1997. Study of the adaptation of the rumen ecosystem to the antimethanoginic effect of monensin measured in vivo. Reprod. Nutr. Dev. 37(Suppl. 1): S69-S70. https://doi.org/10.1051/rnd:19970752
  19. Koike, S. and Y. Kobayashi. 2001. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  20. Lusin, R. and M. Wanapat. 2010. Effect of roughage to concentrate ratio and rice bran oil supplementation on rumen fermentation characteristics using in vitro gas production technique. 14th AAAP conference at pingtung university, Taiwan, p. 353-356.
  21. Mackie, R. I., F. M. C. Gilchrist, A. M. Robberts, P. E. Hannah and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. 90:241. https://doi.org/10.1017/S0021859600055313
  22. McGinn, S. M., K. A. Beauchemin, T. Coates and D. Colombatto. 2004. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82:3346-3356.
  23. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  24. Miron, J., D. Ben-Ghedalia and M. Morrison. 2001. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
  25. Moss, A. R., J. P. Jouany and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. J. Ann. Zootech. 49:231-253. https://doi.org/10.1051/animres:2000119
  26. Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86:2010-2037. https://doi.org/10.1002/jsfa.2577
  27. Newbold, C. J., S. M. Hassan, J. Wang, M. E. Ortega and R. J. Wallace. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 78:237-249. https://doi.org/10.1079/BJN19970143
  28. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  29. Patra, A. K. and J. Saxena. 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24-37. https://doi.org/10.1002/jsfa.4152
  30. Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400. https://doi.org/10.1080/17450390903020406
  31. Puchala, R., B. R. Min, A. L. Goetsch and T. Sahlu. 2005. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 83:182-186.
  32. Reed, J. D., H. Soller and A. Wodward. 1990. Fodder tree and straw diets for sheep: Intake, growth, digestibility and the effects of phenolics on nitrogen utilization. Anim. Feed Sci. Technol. 30:39-50. https://doi.org/10.1016/0377-8401(90)90050-I
  33. Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122. https://doi.org/10.1126/science.1058830
  34. Samuel, M., S. Sagathewan, J. Thomus and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of rumenfluid. Indian J. Anim. Sci. 67:805-807.
  35. SAS, 1996. User's Guide: Statistic, Version 5. Edition. SAS. Inst, Cary, NC, USA.
  36. Singh, K. and G. P. Singh. 1997. Effect of concentrate levels in diet of cattle on rumen microorganisms. Indian J. Anim. Sci. 64:349-350.
  37. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929.
  38. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the digestion of forage crops. J. Br. Grassland Soc. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  39. Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O&B Books Inc, Corvallis.
  40. Vinh, N. T., M. Wanapat, P. Khejornsart and P. Kongmun. 2011. Studies of diversity of rumen microorganisms and fermentation in swamp buffalo fed different diets. J. Anim. Vet. Adv. 10:406-414. https://doi.org/10.3923/javaa.2011.406.414
  41. Waghorn, G. C. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production - progress and challenges. Anim. Feed Sci. Technol. 147:116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
  42. Walichnowski, Z. and S. G. Lawrence. 1982. Studies into the effects of cadmium and low pH upon methane production. Hydrobiologia 91-92:1573-5117.
  43. Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13(Suppl.):59-67.
  44. Wanapat, M. and A. Cherdthong. 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in Swamp buffalo. Curr. Microbiol. 58:294-299. https://doi.org/10.1007/s00284-008-9322-6
  45. Wanapat, M. and O. Pimpa. 1999. Effect of ruminal $NH_3$-N levels ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907. https://doi.org/10.5713/ajas.1999.904
  46. Wang, C. J., S. P. Wang and H. Zhou. 2000. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. J. Anim. Feed Sci. Technol. 148:157-166.
  47. Wora-anu, S., M. Wanapat, C. Wachirapakorn and N. Nuntaso. 2000. Effects of roughage to concentrate ratio on ruminal ecology and voluntary feed intake in cattle and swamp buffaloes fed on urea- treated rice straw. Asian-Aust. J. Anim. Sci. 13(Suppl.):236-236. https://doi.org/10.5713/ajas.2000.236
  48. Wright, A. G., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers and K. D. Smith. 2004. Molecular diversity of rumen methanogens from sheep in western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004
  49. Yan, T., R. E. Agnew, F. J. Gordon and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage based diets. J. Livest. Prod. Sci. 64:253-263. https://doi.org/10.1016/S0301-6226(99)00145-1
  50. Yu, Z. and M. Morrison. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Bio. Techniques. 36:808-812.

Cited by

  1. Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System vol.26, pp.10, 1970, https://doi.org/10.5713/ajas.2013.13153
  2. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers vol.98, pp.1, 2013, https://doi.org/10.1111/jpn.12029
  3. Effect of crude glycerol on in-vitro ruminal fermentation kinetics vol.15, pp.1, 2014, https://doi.org/10.1590/S1519-99402014000100015
  4. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers vol.152, pp.04, 2014, https://doi.org/10.1017/S0021859613000658
  5. on rumen environment, milk yield and milk composition in lactating dairy cows vol.99, pp.2, 2014, https://doi.org/10.1111/jpn.12198
  6. Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation vol.29, pp.8, 2016, https://doi.org/10.5713/ajas.15.0591
  7. rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation vol.87, pp.3, 2016, https://doi.org/10.1111/asj.12428
  8. RETZ. containing tannins and saponins vol.87, pp.6, 2015, https://doi.org/10.1111/asj.12494
  9. Tropical legume supplementation influences microbial protein synthesis and rumen ecology vol.101, pp.3, 2016, https://doi.org/10.1111/jpn.12458
  10. Additives on in vitro ruminal fermentation characteristics of rice straw vol.46, pp.3, 2017, https://doi.org/10.1590/s1806-92902017000300009
  11. rumen fermentation and methane production as affected by rambutan peel powder pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1371608
  12. Replacement of rice straw with cassava-top silage on rumen ecology, fermentation and nutrient digestibilities in dairy steers vol.59, pp.5, 2019, https://doi.org/10.1071/an17477
  13. Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle vol.32, pp.8, 2019, https://doi.org/10.5713/ajas.18.0703
  14. Dietary dragon fruit (Hylocereus undatus) peel powder improved in vitro rumen fermentation and gas production kinetics vol.51, pp.6, 2012, https://doi.org/10.1007/s11250-019-01844-y
  15. Effect of combined supplementation of tamarind seed husk and soapnut on enteric methane emission in crossbred cattle vol.10, pp.5, 2012, https://doi.org/10.1080/17583004.2019.1640136
  16. Effect of Flemingia macrophylla silage on in vitro fermentation characteristics and reduced methane production vol.60, pp.16, 2012, https://doi.org/10.1071/an19281
  17. Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage vol.158, pp.4, 2012, https://doi.org/10.1017/s0021859620000611
  18. Effect of supplementation with tree foliage on in vitro digestibility and fermentation, synthesis of microbial biomass and methane production of cattle diets vol.94, pp.4, 2012, https://doi.org/10.1007/s10457-019-00416-1
  19. Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation vol.7, pp.4, 2012, https://doi.org/10.3390/vetsci7040151
  20. Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio vol.7, pp.3, 2012, https://doi.org/10.3390/fermentation7030196
  21. Cnidoscolus aconitifolius leaf pellet can manipulate rumen fermentation characteristics and nutrient degradability vol.34, pp.10, 2012, https://doi.org/10.5713/ab.20.0833