DOI QR코드

DOI QR Code

Anomalous Stress-Induced Hump Effects in Amorphous Indium Gallium Zinc Oxide TFTs

  • Kim, Yu-Mi (Department of Electronics Engineering, Chungnam National University) ;
  • Jeong, Kwang-Seok (Department of Electronics Engineering, Chungnam National University) ;
  • Yun, Ho-Jin (Department of Electronics Engineering, Chungnam National University) ;
  • Yang, Seung-Dong (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Sang-Youl (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
  • Received : 2011.11.29
  • Accepted : 2012.01.21
  • Published : 2012.02.25

Abstract

In this paper, we investigated the anomalous hump in the bottom gate staggered a-IGZO TFTs. During the positive bias stress, a positive threshold voltage shift was observed in the transfer curve and an anomalous hump occurred as the stress time increased. The hump became more serious in higher gate bias stress while it was not observed under the negative bias stress. The analysis of constant gate bias stress indicated that the anomalous hump was influenced by the migration of positively charged mobile interstitial zinc ion towards the top side of the a-IGZO channel layer.

Keywords

References

  1. J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K.N. Kang, K. S. Kim, T. K. Ahn, H. J. Chung, M. K. Kim, B. S. Gu, J. S. Park, Y. G. Mo, H. D. Kim and H. K. Chung, SID Int. Symp. Digest Tech. Papers, 39, 1 (2008) [http://dx.doi. org/10.1889/1.3069591].
  2. J. H. Lee, D. H. Kim, D. J. Yang, S. Y. Hong, K. S. Yoon, P. S. Hong, C. O. Jeong, H. S. Park, S. Y. Kim, S. K. Lim, S. S. Kim, K. S. Son, T. S. Kim, J. Y. Kwon and S. Y. Lee, SID Int. Symp. Digest Tech. Papers, 39, 625 (2008) [http://dx.doi.org/10.1889/1.3069740].
  3. J. M. Lee, I. T. Cho, J. H. Lee and H. I. Kwon, Appl. Phys. Lett., 93, 093504 (2008) [http://dx.doi.org/10.1063/1.2977865].
  4. A. Suresh and J. F. Mutha, Appl. Phys. Lett., 92, 033502 (2008) [http://dx.doi.org/10.1063/1.2824758].
  5. J. Triska, J. F. Conley, R. Presley and J. F. Wager, J. Vac. Sci. Technol. B, 28, C5I1 (2010) [http://dx.doi.org/10.1116/1.3455494].
  6. Y. K. Moon, Sih Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee and J. W. Park, Appl. Phys. Lett., 95, 013507 (2009) [http:// dx.doi.org/10.1063/1.3167816].
  7. J. S. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin and Y. G. Mo, Appl. Phys. Lett., 95, 123502 (2009) [http://dx.doi.org/10.1063/1.3232179].
  8. J. H. Lee, S. G. Park, S. M. Han, M. K. Han, K. C. Park, Solid- State Electronics, 52, 462 (2008) [http://dx.doi.org/10.1016/ j.sse.2007.10.030].
  9. S. Y. Huang, T. C. Chang, M. C. Chen, and W. L. Liau, Electrochemical and Solid-State Letters, 14, H177 (2011) [http:// dx.doi.org/10.1149/1.3534828].
  10. C. T. Tsai, T. C. Chang, S. C. Chen, Ikai Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu and C. Y. Huang, Appl. Phys. Lett., 96, 242105 (2010) [http://dx.doi.org/10.1063/1.3453870].
  11. F. R. Libsch and J. Kanicki, Appl. Phys. Lett., 62, 1286 (1993) [http://dx.doi.org/10.1063/1.108709].
  12. C. F. Huang, C. Y. Peng, Y. J. Yang, H. C. Sun, H. C. Chang, P. S. Kuo, H. L. Chang, C. Z. Liu and C. W. Liu, IEEE Electron Device Letters, 29, 1332 (2008) [http://dx.doi.org/10.1109/ LED.2008.2007306].
  13. P. Kofstad, J. Phys. chem. Solids, 23, 1571 (1962) [http://dx.doi. org/10.1016/0022-3697(62)90239-1].
  14. P. Bonasewicz, W. hirschwald, and G. Neumann, Phys. Status solidi A, 97, 593 (1986) [http://dx.doi.org/ 10.1002/ pssa.2210970234].
  15. V. Gavryushin, G. Raciukaitis, D. Juodzbalis, A. Kazlauskas, and V. Kubertavicius, J. Cryst. Growth, 138, 924 (1994) [http://dx.doi. org/10.1016/0022-0248(94)90933-4].
  16. Anderson Janotti and Chris G. Van de Walle, Phys. Rev. B, 76, 165202 (2007) [http://dx.doi.org/ 10.1103/Phys- RevB.76.165202].
  17. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990) [http://dx.doi. org/10.1111/j.1151-2916.1990.tb05232.x].
  18. T. K. Gupta, W. G. Carlson, P. L. Hower, J. Appl. Phys., 52, 4104 (1981) [http://dx.doi.org/10.1063/1.329262].
  19. S. L. Jiang, T. T. Xie, H. Yu, Y. Q. Huang and H. B. Zhang, Microelectronic Engineering, 85, 371 (2008) [http://dx.doi. org/10.1016/j.mee.2007.07.011].

Cited by

  1. Influence of passivation deposition on the performance of In-Zn-O thin-film transistors based on etch-stopper structure vol.1, pp.3, 2014, https://doi.org/10.1088/2053-1591/1/3/036402
  2. The use of high density plasma system to improve the etch properties of the zinc tin oxide thin film for transparent thin film transistors active layers vol.292, 2014, https://doi.org/10.1016/j.apsusc.2013.12.079
  3. Investigation on stress induced hump phenomenon in IGZO thin film transistors under negative bias stress and illumination vol.55, pp.9-10, 2015, https://doi.org/10.1016/j.microrel.2015.06.024
  4. Effect of O2Incorporation During the Channel Fabrication Process on Aluminum-Doped Zinc Oxide Thin-Film Transistor Characteristics vol.52, pp.4S, 2013, https://doi.org/10.7567/JJAP.52.04CF11
  5. Improvements in the reliability of a-InGaZnO thin-film transistors with triple stacked gate insulator in flexible electronics applications vol.595, 2015, https://doi.org/10.1016/j.tsf.2015.10.038
  6. A study on H2 plasma treatment effect on a-IGZO thin film transistor vol.27, pp.17, 2012, https://doi.org/10.1557/jmr.2012.199
  7. Influences of film thickness and annealing temperature on properties of sol–gel derived ZnO–SnO 2 nanocomposite thin film vol.320, 2014, https://doi.org/10.1016/j.apsusc.2014.09.099
  8. Surface reaction effects on dry etching of IGZO thin films in N2/BCl3/Ar plasma vol.112, 2013, https://doi.org/10.1016/j.mee.2013.06.005
  9. Electrical Instabilities in Amorphous InGaZnO Thin Film Transistors with Si3N4and Si3N4/Al2O3Gate Dielectrics vol.51, pp.9S2, 2012, https://doi.org/10.7567/JJAP.51.09MF10
  10. Defect generation in amorphous-indium-gallium-zinc-oxide thin-film transistors by positive bias stress at elevated temperature vol.115, pp.13, 2014, https://doi.org/10.1063/1.4870458
  11. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials vol.2015, 2015, https://doi.org/10.1155/2015/782786