DOI QR코드

DOI QR Code

THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS

  • Seo, Jun-Ho (High Enthalpy Plasma Research Center, Chonbuk National University) ;
  • Hong, Bong-Guen (High Enthalpy Plasma Research Center, Chonbuk National University)
  • Received : 2012.01.26
  • Published : 2012.02.25

Abstract

A brief review on the thermal plasma synthesis of nano-sized powders is presented according to the application materials, such as, metals, ceramics, glasses, carbonaceous materials and other functional composites, such as, supported metal catalyst and core-shell structured nano materials. As widely adopted plasma sources available for thermal plasma synthesis of nanosized powders, three kinds of plasma torches, such as transferred and non-transferred DC and RF plasma torches, are introduced with the main features of each torch system. In the basis of the described torch features and the properties of suggested materials, application results including synthesis mechanism are reviewed in this paper.

Keywords

References

  1. M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas : Fundamentals and Applications, Volume 1, Plenum Press, New York and London,1994.
  2. P. Fauchais and A. Vardelle, "Thermal plasmas," IEEE Trans. Plasma Sci., 25, 1258 (1997). https://doi.org/10.1109/27.650901
  3. Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg,1991.
  4. E. Pfender, "Thermal Plasma Technology: Where Do We Stand and Where Are We Going?," Plasma Chem. Plasma Process., 19(1), 1 (1999) https://doi.org/10.1023/A:1021899731587
  5. M. I. Boulos, "The inductively coupled R.F. (radio frequency) plasma," Pure & Appl. Chem. 57, 1321 (1985). https://doi.org/10.1351/pac198557091321
  6. J. Heberlein, "New approaches in thermal plasma technology," Pure & Appl. Chem., 74(3), 327 (2002). https://doi.org/10.1351/pac200274030327
  7. B. Pateyron, M. F. Elchinger, G. Delluc and P. Fauchais, "Sound Velocity in Different Reacting Thermal Plasma Systems," Plasma Chem. Plasma Process., 16(1), 39 (1996). https://doi.org/10.1007/BF01465216
  8. T. Yoshida, "The future of thermal plasma processing," Mater. T. JIM, 31(1), 1 (1990) https://doi.org/10.2320/matertrans1989.31.1
  9. P. R. Taylor and S. A. Pirzada, "Thermal Plasma Processing of Materials: A Review," Adv. Perform. Mater., 1, 35 (1994). https://doi.org/10.1007/BF00705312
  10. P. Fauchais, A. Vardelle and A. Denoirjean, "Reactive thermal plasmas: ultrafine particle synthesis and coating deposition," Surf. Coat. Tech. 97, 66 (1997). https://doi.org/10.1016/S0257-8972(97)00294-6
  11. D. Vollath, "Plasma synthesis of nanopowders," J. Nanopart. Res., 10, 39 (2008). https://doi.org/10.1007/s11051-008-9427-7
  12. J. R. Fincke, W. D. Swank, S. C. Snyder and D. C. Haggard, "Enthalpy probe performance in compressible thermal plasma jets", Rev. Sci. Instrum., 64(12), 3585 (1993). https://doi.org/10.1063/1.1144285
  13. M. Rahmane, G. Soucy and M. I. Boulos, "Analysis of the enthalpy probe technique for thermal plasma diagnostics", Rev. Sci. Instrum., 66(6), 3424 (1995). https://doi.org/10.1063/1.1145517
  14. S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim and S. H. Hong, "Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch," IEEE Trans. Plasma Sci., 32(2) (2004).
  15. J. H. Park and S. H. Hong, "Optimization analysis of an inductively coupled torch for material processing by using local thermal equilibrium numerical analysis," J. Kor. Phys. Soc., 31, 753 (1997).
  16. M. Rahmane, G. Soucy and M. I. Boulos, "Diffusion phenomena of a cold gas in thermal plasma stream," J. Plasma Chem. Plasma Proces., 16, 169S (1996).
  17. R. Ye, P. Proulx and M. I. Boulos, "Turbulence phenomena in the radio frequency induction plasma torch," Int. J. Heat Mass Trans., 42, 1585 (1999). https://doi.org/10.1016/S0017-9310(98)00260-9
  18. Ph. Buffat and J. P. Borel, "Size effect on the melting temperature of gold partlcles," Phys. Rev. A, 13, 2287 (1976) https://doi.org/10.1103/PhysRevA.13.2287
  19. Ed. by C. Corti and R. Holliday, Gold : science and applications, CRC Press Taylor & Francis Group, New-York, 2010.
  20. Ed. by D. L. Feldheim and C.A. Foss. Jr., Metal Nanoparticles : Synthesis, Characterization, and Applications, Marcel Dekker Inc., New York, Basel, 2010.
  21. Y. L. Lee, J. W. Joung and K. J. Lee, Method for manufacturing nickel nanoparticles, US Patent 7648556 B2.
  22. S. Ohno and M. Uda, "Generation rate of ultrafine metal particles in hydrogen plasma - metal reaction," J, Jpn. Insl. Met., 48, 640 (1984). (Japanese) https://doi.org/10.2320/jinstmet1952.48.6_640
  23. A. M. Fudoligh, H. Nogami and J. Yagi, "Prediction of generation rates in 'reactive arc plasma' ultrafine powder production process, ISIJ Int., 37, 641 (1997) https://doi.org/10.2355/isijinternational.37.641
  24. M. Uda, S. Ohno and T. Hoshi, Process for production fine metal particles, US Patent 4376740.
  25. M. Uda, S. Ohno and H. Okuyama, Process for production particles of ceramic, US Patent 4889665.
  26. T. Araya, Y. Ibaraki, Y. Endo, S. Hioki and M. Kanamaru, Arc apparatus for producing ultrafine particles, US Patent 4732369.
  27. M. Shigeta and A. B. Murphy, "Thermal plasmas for nanofabrication," J. Phys. D: Appl. Phys., 44, 174025 (2011) https://doi.org/10.1088/0022-3727/44/17/174025
  28. S. H. Lee, S. M. Oh and D. W. Park, "Preparation of silver nanopowder by thermal plasma," Mater. Sci. Eng. C, 27, 1286 (2007) https://doi.org/10.1016/j.msec.2006.08.010
  29. M. Ogawa and S. Abe, Method for making ultra-fine ceramic particles, US Patent 4610857.
  30. S. Kumara, V. Selvarajan, P.V.A. Padmanabhan and K.P. Sreekumar, "Spheroidization of metal and ceramic powders in thermal plasma jet: Comparison between experimental results and theoretical estimation," J. Mater. Process. Tech., 176, 87 (2006) https://doi.org/10.1016/j.jmatprotec.2006.02.023
  31. H. P. Li and E. Pfender, "Three Dimensional Modeling of the Plasma Spray Process," J. Thermal Spray Technol., 16, 245 (2007) https://doi.org/10.1007/s11666-007-9023-x
  32. M. Vardelle, C. Trassy, A. Vardelle and P. Fauchais, "Experimental Investigation of Powder Vaporization in Thermal Plasma Jets," Plasma Chem. Plasma Process., 11, 185 (1991) https://doi.org/10.1007/BF01447242
  33. R. M. Young and E. Pfender, "Generation and Behavior of Fine Particles in Thermal Plasmas - A Review," Plasma Chem. Plasma Process., 5, 1 (1985) https://doi.org/10.1007/BF00567907
  34. M. I. Boulos, J. Jurewicz and J. Guo, Induction plasma synthesis of nanopowders, US patent 8013269 B2.
  35. S. L. Girshick, C. P. Chiu, R. Muno, C. Y. Wu, L. Yang, S. K. Singh, and P.H. McMurry, "Thermal Plasma Synthesis of Ultrafine Iron Particles," J. Aerosol Sci., 24, 367 (1993) https://doi.org/10.1016/0021-8502(93)90009-X
  36. P. Proulx, J. Mostaghimi and M. I. Boulos, "Plasma - Particle Interaction Effects in Induction Plasma Modeling Under Dense Loading Conditions," Int. J. Heat Mass Transfer, 28, 1327 (1985). https://doi.org/10.1016/0017-9310(85)90163-2
  37. P. Proulx, J. Mostaghimi, and M. I. Boulos, "Heating of Powders in r.f. Inductively Coupled Plasma under Dense Loading Conditions," Plasma Chem. Plasma Process., 7, 29 (1987). https://doi.org/10.1007/BF01015998
  38. www.tekna.com
  39. M. Shigeta, T. Watanabe and H. Nishiyama, "Numerical investigation for nano-particle synthesis in an RF inductively coupled plasma," Thin Solid Films, 457, 192 (2004). https://doi.org/10.1016/j.tsf.2003.12.020
  40. S. Son, M. Taheri, E. Carpenter, V. G. Harris and M. E. McHenry, "Synthesis of ferrite and nickel ferrite nanoparticles using radiofrequency thermal plasma torch," J. Appl. Phys., 91, 7589 (2002) https://doi.org/10.1063/1.1452705
  41. J. H. Seo, D. U. Kim, J. S. Nam, S. H. Hong, S. B. Sohn and S. M. Song, "Radio Frequency Thermal Plasma Treatment for Size Reduction and Spheroidization of Glass Powders Used in Ceramic Electronic Devices," J. Am. Ceram. Soc., 90, 1717 (2007).
  42. D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli and T. Trombetti, "3-D Numerical Analysis of Powder Injection in Inductively Coupled Plasma Torches" IEEE Trans. Plasma Sci., 33, 424 (2005). https://doi.org/10.1109/TPS.2005.845323
  43. R. Ye, P. Proulx and M. I. Boulos, "Particle Turbulent Dispersion and Loading Effects in an Inductively Coupled Radio Frequency Plasma," J. Phys. D, Appl. Phys., 33, 2154 (2000). https://doi.org/10.1088/0022-3727/33/17/310
  44. M. Rahmane, G. Soucy and M. I. Boulos, "Mass transfer in induction plasma reactors," Int. J. Heat Mass Transfer, 32, 2035 (1994).
  45. N.Y. Mendoza-Gonzalez, B.M. Goortani and P. Proulx, "Numerical simulation of silica nanoparticles production in an RF plasma reactor: effect of quench," Mater. Sci. Eng. C, 27, 1267 (2007)
  46. N.Y. Mendoza-Gonzalez, M.El. Morsli and P. Proulx, "Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Coalescence and Fractal Aggregation" J. Therm. Spray Technol., 17, 533 (2008) https://doi.org/10.1007/s11666-008-9209-x
  47. D. Harbec, F. Gitzhofer and A. Tagnit-Hamou, "Induction plasma synthesis of nanometric spheroidized glass powder for use in cementitious materials," Powder Technol., 214, 356 (2011) https://doi.org/10.1016/j.powtec.2011.08.031
  48. P. Bushier, H. Schubert, J. Uhlenbusch, and M. Weiss, "Evaporation of Zirconia Powders in a Thermal Radio- Frequency Plasma," J. Thermal Spray Technol., 10, 666 (2001) https://doi.org/10.1361/105996301770349196
  49. K. Kawajiri, J. H. Seo, N. Sato, S. H. Hong, and H. Nishiyama, "In-Flight Treatment of Titanium Dioxide Nano Particles Using a DC-RF Hybrid Plasma Flow System"; pp. 32 - 33 in CD-Proceedings of 17th International Symposium on Plasma Chemistry, Toronto, Canada, August 7 - 12, 2005, Edited by J. Mostaghimi. International Plasma Chemistry Society
  50. T. Ishigaki, Y. Bando, Y. Moriyoshi, and M. I. Boulos, "Deposition from the Vapor Phase During the Induction Plasma Treatment of Alumina Powders," J. Mater. Sci., 28, 4223 (1993). https://doi.org/10.1007/BF00351258
  51. H. Nishiyama, M. Onodera, J. Igawa and T. Nakajima, "Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power," J. Thermal Spray Technol., 18 (4), 593 (2009) https://doi.org/10.1007/s11666-009-9358-6
  52. B. M. Goortani, N.Y. Mendoza-Gonzalez and P. Proulx, "Synthesis of $SiO_{2}$ Nanoparticles in RF Plasma Reactors: Effect of Feed Rate and Quench Gas Injection," Int. J. Chem. React. Eng., 4, A33 (2006).
  53. B. Bora, N. Aomoa R. K. Bordoloi, D. N. Srivastava, H. Bhuyan, A.K. Das and M. Kakati, "Free-flowing, transparent g-alumina nanoparticles synthesized by a supersonic thermal plasma expansion process," Curr. Appl. Phys. doi:10.1016 /j.cap.2011.12.001 (2012)
  54. M. Kakati, B. Bora, S. Sarma, B.J. Saikia, T. Shripathi, U. Deshpande, A. Dubey, G. Ghosh and A.K. Das, "Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion," Vacuum, 82, 833 (2008) https://doi.org/10.1016/j.vacuum.2007.11.014
  55. B. Bora, B.J. Saikia, C. Borgohain, M. Kakati and A.K. Das, "Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion," Vacuum, 85, 283 (2010) https://doi.org/10.1016/j.vacuum.2010.06.008
  56. Ed. by R. d'Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato and F. Arefi-Khonsari, Advanced Plasma Technology, Wiley-VCH GmbH & CO., Weinheim, 2008.
  57. T. W. Ebbensen and P. M. Ajayan, "Large-scale synthesis of carbon nanotubes," Nature, 358, 220 (1992). https://doi.org/10.1038/358220a0
  58. S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, 363, 603 (1993). https://doi.org/10.1038/363603a0
  59. Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow and S. Iijima, "Mass production of single-wall carbon nanotubes by the arc plasma jet method," Chem. Phys. Lett. 323, 580 (2000). https://doi.org/10.1016/S0009-2614(00)00556-X
  60. Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, "Large scale synthesis of single-wall carbon nanotubes by arc-discharge method," J. Phys. Chem. Solids, 61, 1031 (2000). https://doi.org/10.1016/S0022-3697(99)00358-3
  61. S.I. Choi, J.S. Nam, J.I. Kim, T.H. Hwang, J.H. Seo and S.H. Hong, "Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma," Thin Solid Films, 506- 507, 244 (2006) https://doi.org/10.1016/j.tsf.2005.08.022
  62. M. Bystrzejewski, A. Huczko, H. lange, W. W. PLotczyk, R. Stankiewicz, T. Pichler, T. Gemming and M.H.Rummeli, "A continuous synthesis of carbon nanotubes by dc thermal plasma jet," Appl. Phys. A, 91, 223 (2008) https://doi.org/10.1007/s00339-008-4400-y
  63. K. S. Kim, A. Moradian, J. Mostaghimi, Y. Alinejad, A. Shahverdi, B. Simard and G. Soucy, "Synthesis of Single- Walled Carbon Nanotubes by Induction Thermal Plasma," Nano Res., 2,800 (2009) https://doi.org/10.1007/s12274-009-9085-9
  64. K. S. Kim, G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy, "Large-scale production of singlewalled carbon nanotubes by induction thermal plasma," J. Phys. D: Appl. Phys., 40, 2375 (2007) https://doi.org/10.1088/0022-3727/40/8/S17
  65. B. Geir and M. Homer, Plasma preparation of Carbon Balck, US Patent 3409403 (1968).
  66. W. R. Norman, Production of Carbon Black Using Plasma-Heated Nitrogen, US Patent 3409403 (1969).
  67. L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei and X. Bourrat, "Plasma processing: A step toward the production of new grades of carbon black," Carbon, 40, 169 (2002). https://doi.org/10.1016/S0008-6223(01)00169-5
  68. F. Fabry. G. Flamant and L. Fulcheri, "Carbon black processing by thermal plasma. analysis of the particle formation mechanism," Chem. Eng. Sci., 56, 2123 (2001). https://doi.org/10.1016/S0009-2509(00)00486-3
  69. K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju and S. H. Hong, "Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas," IEEE Trans. Plasma Sci. 33(2), 813 (2005). https://doi.org/10.1109/TPS.2005.844526
  70. S. I. Choi, J. S. Nam and J. H. Seo, "Formation of carbon black by thermal plasma decomposition of methane," J. Environmental & Thermal Eng., 8(3), 1 (2011) (Korean)
  71. K. P. Sreekumar, M. Vijay, T. K. Thiyagarajan, K. Krishnan and P. V. Ananthapadmanabhan, "Reactive Plasma Synthesis of Nanocrystalline Ceramic Oxides," J. Phys.: Conf. Ser., 208 012123 (2010). https://doi.org/10.1088/1742-6596/208/1/012123
  72. S. M. Oh and D. W. Park, "Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet," Korean J. Chem. Eng., 17(3), 299 (2000) https://doi.org/10.1007/BF02699044
  73. J. Y. Guo, F. Gitzhofer, M. I. Boulos, "Induction plasma synthesis of ultrafine SiC powders from silicon and $CH_{4}$," J. Mater. Sci., 30, 5589 (1995). https://doi.org/10.1007/BF00356691
  74. F. Gitzhofer, "Induction plasma synthesis of ultrafine SiC," Pure & Appl. Chem., 68, 1113 (1996). https://doi.org/10.1351/pac199668051113
  75. L. Tong and R. G. Reddy, "Synthesis of titanium carbide nano-powders by thermal plasma," Scripta Mater., 52, 1253 (2005). https://doi.org/10.1016/j.scriptamat.2005.02.033
  76. E. Bouyer, M. Muller, R. H. Henne and G. Schiller, "Thermal plasma processing of nanostructured Si-based ceramic materials," J. Nanopar. Res., 3, 373 (2001)
  77. M. Leparoux, C. Schreuders, J. W. Shin and S. Siegmann, "Induction Plasma Synthesis of Carbide Nanopowders," Adv. Eng. Mater., 7, 349 (2005). https://doi.org/10.1002/adem.200500046
  78. H. Ahn, M. Hur and S. H. Hong, "Synthesis of ultra-fine powders of aluminum nitride by DC plasma spray," J. Korean Surface Technology, 29(6), 73 (1996) (Korean)
  79. S. M. Oh and D. W. Park, "Preparation of AlN fine powder by thermal plasma processing," Thin Solid Films, 316, 189 (1998) https://doi.org/10.1016/S0040-6090(98)00413-1
  80. Y. H. Hu, "Solid-solution catalysts for $CO_{2}$ reforming of methane," Catal. Today, 148, 206 (2009) https://doi.org/10.1016/j.cattod.2009.07.076
  81. E. Ruckenstein and Y. H. Hu, "Carbon dioxide reforming of methane over nickel/ alkaline earth metal oxide catalysts," Appl. Catal. A: Gen., 133, 149 (1995). https://doi.org/10.1016/0926-860X(95)00201-4
  82. B. C. Enger, R. Lodeng and A. Holman, "A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts," Appl. Catal. A: Gen., 346, 1 (2008). https://doi.org/10.1016/j.apcata.2008.05.018
  83. K.O. Christenson, D. Chen, R. Lodeng and A. Holman, "Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming," Appl. Catal. A: Gen., 314, 9 (2006) https://doi.org/10.1016/j.apcata.2006.07.028
  84. J. H. Seo, M. Y. Lee and J. S. Kim, "Preparation of NiO-MgO solid solution nano-catalysts for partial oxidation of methane by RF (Radio Frequency) thermal plasma," Surf. Coat. Tech. (submitted).
  85. H. Zea, C. K. Chen, K. Lester, A. Phillips, A. Daty, I. Fonseca and J. Phillips, "Plasma torch generation of carbon supported metal catalysts," Catal. Today, 89, 237 (2004) https://doi.org/10.1016/j.cattod.2003.11.033
  86. G. P. Vissokov, "Some peculiarities of nano-dispersed catalysts synthesized or regenerated in an arc plasma conditions," Catal. Today, 89, 245 (2004) https://doi.org/10.1016/j.cattod.2003.11.034
  87. K. Nishimura, T. Fujii, K. Yubuta and S. Shinozaki, Process for producing oxide coated fine metal particles, US Patent 6582763 B1
  88. K. Nishimura, T. Fujii, K. Yubuta and S. Shinozaki, Fine glass particle containing embedded oxide and process for producing the same, US Patent 6578381 B2
  89. Y. Saito, "Nanoparticles and filled nanocapsules," Carbon, 33, 979 (1995) https://doi.org/10.1016/0008-6223(95)00026-A
  90. Z. Wei, L. Liu, H. Yang, C. Zhang and W. Feng, "Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma," Trans. Nonferrous Met. Soc. China, 21, 2026 (2011) https://doi.org/10.1016/S1003-6326(11)60967-9
  91. T. Oku, T. Kusunose, T. Hirata, R. Hatakeyama, N. Sato, K. Niihara and K. Suganuma, "Formation and structure of Ag, Ge and SiC nanoparticles encapsulated in boron nitride and carbon nanocapsules," Diam. Relat. Mater., 9, 911 (2000) https://doi.org/10.1016/S0925-9635(99)00214-9
  92. M. Y. Lee, J. S. Kim and J. H. Seo, "RF thermal plasma synthesis of nano-sized IZTO (Indium Zinc Tin Oxide) powders," Thin Solid Films, (submitted)

Cited by

  1. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis vol.15, pp.1, 2013, https://doi.org/10.1007/s11051-012-1400-9
  2. Preparation of Carbon-Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System vol.22, pp.6, 2013, https://doi.org/10.1007/s11666-013-9941-8
  3. Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal vol.26, pp.5, 2013, https://doi.org/10.4313/JKEM.2013.26.5.401
  4. Gliding Arc Plasma Synthesis of Crystalline TiO2 Nanopowders with High Photocatalytic Activity vol.33, pp.5, 2013, https://doi.org/10.1007/s11090-013-9470-8
  5. Synthesis of Single-Phase Gd-Doped Ceria Nanopowders by Radio Frequency Thermal Plasma Treatment vol.97, pp.5, 2014, https://doi.org/10.1111/jace.12918
  6. A review on the methods of preparation of elemental boron vol.10, pp.3, 2015, https://doi.org/10.1002/apj.1892
  7. Synthesis of Copper Particles by Non-thermal Atmospheric Pressure Plasma Jet vol.12, pp.8, 2015, https://doi.org/10.1002/ppap.201400197
  8. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor vol.17, pp.10, 2015, https://doi.org/10.1007/s11051-015-3222-z
  9. and ZnO vol.54, pp.6, 2015, https://doi.org/10.7567/JJAP.54.065201
  10. Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering vol.60, pp.7, 2015, https://doi.org/10.1179/1743280415Y.0000000005
  11. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells vol.30, pp.9, 2016, https://doi.org/10.1177/0885328216629822
  12. In situ measurement of the two-dimensional temperature field of a dual-jet direct-current arc plasma vol.87, pp.3, 2016, https://doi.org/10.1063/1.4942965
  13. -Ar plasma system vol.24, pp.6, 2017, https://doi.org/10.1063/1.4985304
  14. Design-Oriented Modelling of Different Quenching Solutions in Induction Plasma Synthesis of Copper Nanoparticles vol.37, pp.3, 2017, https://doi.org/10.1007/s11090-016-9779-1
  15. Tungsten Micropowder/Copper Nanoparticle Core/Shell-Structured Composite Powder Synthesized by Inductively Coupled Thermal Plasma Process vol.48, pp.1, 2017, https://doi.org/10.1007/s11661-016-3849-0
  16. Physical and Chemical Processes Research of Isotope Separation in Plasma under Magnetic Field vol.880, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.880.128
  17. Metal Oxide Nanopowder Production by Evaporation– Condensation Using a Focused Microwave Radiation at a Frequency of 24 GHz vol.6, pp.1, 2015, https://doi.org/10.1115/1.4032015
  18. Plasma processes in the preparation of lithium-ion battery electrodes and separators vol.50, pp.16, 2017, https://doi.org/10.1088/1361-6463/aa6245
  19. Modeling of a transferred arc inside a crucible with gas injection through a hollow cathode vol.51, pp.30, 2018, https://doi.org/10.1088/1361-6463/aacd5c
  20. Numerical Analysis on the Electrical and Thermal Flow Characteristics of Ar-N2 Inductively Coupled Plasma Torch System vol.72, pp.7, 2018, https://doi.org/10.3938/jkps.72.755
  21. Influence of the Shroud Gas Injection Configuration on the Characteristics of a DC Non-transferred Arc Plasma Torch vol.38, pp.4, 2018, https://doi.org/10.1007/s11090-018-9890-6
  22. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials vol.125, pp.7, 2019, https://doi.org/10.1063/1.5060977
  23. Review on Plasma Atomizer Technology for Metal Powder vol.269, pp.2261-236X, 2019, https://doi.org/10.1051/matecconf/201926905004