DOI QR코드

DOI QR Code

3-Level Response Surface Design by Using Expanded Spherical Experimental Region

확장된 구형설계를 이용한 반응표면설계

  • Kim, Ha-Yan (Graduate School of Sungshin Women's University) ;
  • Lee, Woo-Sun (Department of Statistics, Sungshin Women's University)
  • 김하얀 (성신여자대학교 대학원 통계학과) ;
  • 이우선 (성신여자대학교 통계학과)
  • Received : 2011.12.13
  • Accepted : 2012.01.16
  • Published : 2012.02.29

Abstract

Response surface methodology(RSM) is a very useful statistical techniques for improving and optimizing the product process. By this reason, RSM has been utilized extensively in the industrial world, particularly in the circumstances where several product variables potentially influence some quality characteristic of the product. In order to estimate the optimal condition of product variables, an experiment is being conducted defining appropriate experimental region. However, this experimental region can vary with the experimental circumstances and choice of a researcher. Response surface designs can be classified, according to the shape of the experimental region, into spherical and cuboidal. In the spherical case, the design is either rotatable or very near-rotatable. The central composite design(CCD)s widely used in RSM is an example of 5-level and spherical design. The cuboidal CCDs(CCDs with ${\alpha}=1$) is appropriate when an experimental region is cuboidal but this design dose not satisfy the rotatability as it is not spherical. Practically, a 3-level spherical design is often required in the industrial world where various level of experiments are not available. Box-Behnken design(BBD)s are a most popular 3-level spherical designs for fitting second-order response surfaces and satisfy the rotatability but the experimental region does not vary with the number of variables. The new experimental design with expanded experimental region can be considered if the predicting response at the extremes are interested. This paper proposes a new 3-level spherical RSM which are constructed to expand the experimental region together with number of product variables.

반응표면 방법론은 어떤 공정을 개선하거나 최적화하는데 이용되는 아주 유용한 통계적방법이다. 이러한 최적조건을 추정하기 위하여 최적조건이 있으리라 예상되는 실험구역을 탐색하여 실험을 실시한다. 그런데 이 실험구역은 실험의 환경의 제약 그리고 연구자의 선택 등으로 그 모습이 다양하게 달라질 수 있다. 반응표면 설계는 실험구역의 모양에 따라 보통 둥그런 모양의 "구형설계"와 육면체 모양의 "입방형설계"로 구분한다. 구형설계는 회전성을 만족하거나 회전성에 상당히 근접하는 "유사회전성"을 갖는 특징이 있다. 반응표면 설계에서 가장 많이 사용되는 중심합성설계는 실험구역이 구형인 5수준 실험설계이다. 이 때, 축점의 ${\alpha}$값을 ${\alpha}=\sqrt{k}$ 대신 ${\alpha}=1$로 조정하면 5-수준이 아닌 3-수준 입방형 중심합성설계를 얻을 수 있다. 그러나 입방형 중심합성설계는 실험구역이 구형이 아니므로 회전성을 만족하지 못하는 문제가 있다. 이러한 이유로, 변수들의 수준 수를 3으로 제한하면서 실험구역은 구형인 실험설계가 필요할 때가 많다. 이에 대한 대표적 실험설계가 바로 박스-벤켄 실험설계이다. 이 실험설계는 구형의 실험구역으로 회전성을 만족하나 실험구역의 크기가 변수의 개수가 증가해도 제자리 수준으로 좁은 특징이 있다. 현실적으로 실험구역의 가상 자리 부분에 대한 예측에 관심이 있을 경우 변수의 개수가 많아지면 이에 비례하여 실험구역이 커지는 실험설계가 바람직하다. 본 논문은 3-수준 입방형설계에 비하여 실험구역이 유달리 좁은 박스-벤켄 실험설계를 보완하여 구형설계를 만족하면서도 다른 한편으로는 변수 수에 따라 실험반경이 커지는 3-수준 구형 반응표면 설계를 소개하고자 한다. 이 방법을 기존의 실험설계들과 비교한 결과 변수수가 비교적 작을 경우 실험횟수 등을 고려하여 응용가치가 있음을 확인하였다.

Keywords

References

  1. 이우선, 임성수 (2001). 반응표면실험을 위한 3-수준 구형실험설계, <품질경영학회지>, 29, 24-40.
  2. Box, G. E. P. and Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables, Technometrics, 2, 455-475. https://doi.org/10.2307/1266454
  3. Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum conditions, Journal of the Royal Ststistical Society, B, 13, 1-45.
  4. Khuri, A. I. and Cornell, J. A. (1996). Response Surfaces, Marcel Dekker, New York.
  5. Montgomery, D. C. (2005). Design and Analysis of Experiments, John Wiley & Sons, New York.
  6. Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology, John Wiley & Sons, New York.

Cited by

  1. Optimization of Muffin with Dropwort Powder Using Response Surface Methodology vol.29, pp.6, 2014, https://doi.org/10.7318/KJFC/2014.29.6.623