DOI QR코드

DOI QR Code

Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria

칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가

  • Lee, Gong-Hee (Reactor & Safety Evaluation Dept., Korea Institute of Nuclear Safety) ;
  • Bang, Young-Seok (Reactor & Safety Evaluation Dept., Korea Institute of Nuclear Safety) ;
  • Woo, Sweng-Woong (Reactor & Safety Evaluation Dept., Korea Institute of Nuclear Safety)
  • 이공희 (한국원자력안전기술원 원자로안전해석실) ;
  • 방영석 (한국원자력안전기술원 원자로안전해석실) ;
  • 우승웅 (한국원자력안전기술원 원자로안전해석실)
  • Received : 2011.09.08
  • Accepted : 2011.12.22
  • Published : 2012.03.01

Abstract

The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.

CANDU형 원전의 칼란드리아 내부 감속재 열유동은 입구 노즐에서 나온 제트 유동에 의해 발생하는 관성력과 감속재로 전달되는 열부하에 의해 발생하는 부력의 상호작용으로 인해 복잡한 난류 특성을 나타낸다. 본 연구에서는 이러한 복잡한 감속재 열유동을 정확히 예측하기 위한 난류모델의 성능을 평가하기 위해 상용 유동해석 프로그램인 FLUENT에 탑재된 난류모델들을 사용해서 계산한 결과를 Sheridan Park Engineering Laboratory (SPEL)의 실험값과 비교하였다. 결론적으로 CANDU형 원전의 칼란드리아 내부 감속재 열유동을 신뢰할 수 있게 예측하기 위해서는 부력이 난류 유동에 미치는 영향을 고려해주는 생성항을 포함한 난류 모델이 사용되어야 한다.

Keywords

References

  1. "CNSC Staff Integrated Safety Assessment of Canadian Nuclear Power Plants for 2009," 2010, Canadian Nuclear Safety Commission, INFO- 0809, p. 120.
  2. Collins, W. M., 1988, "Simulation of the SPEL Small Scale Moderator Experiments Using the General Purpose Fluid-flow, Heat Transfer Code PHOENICS," TTR-213, AECL.
  3. Huget, R. G., Szymanski, J. K. and Midvidy, W. I., 1989, "Status of Physical and Numerical Modelling of CANDU Moderator Circulation," 10th Annual Canadian Nuclear Society Conference, Ottawa, Canada.
  4. Yoon, C., Rhee, B. W. and Min, B. J., 2002, "Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature against SPEL Experiments," Proc. 10th Int. Conf. Nuclear Eng., ICONE10-22114, Arlington, Virginia, USA.
  5. Kim, M. W., Yu, S. O. and Kim, H. J., 2006, "Analyses on Fluid Flow and Heat Transfer inside Calandria Vessel of CANDU-6 Using CFD," Nuclear Engineering and Design, Vol. 236, pp. 1155-1164. https://doi.org/10.1016/j.nucengdes.2005.10.018
  6. "FLUENT User's Guide," Version 6.2, FLUENT Inc., 2006.
  7. Koroyannakis, D., Hepworth, R. D. and Hendrie, G., 1983, "An Experimental Study of Combined Natural and Forced Convection Flow in a Cylindrical Tank," AECL, TDVI-382.
  8. Lee, G. H. and Woo, S. W., 2011, "Sensitivity Study on a CFD Model for the Analysis of Moderator Fluid Flow and Heat Transfer inside CANDU Calandria," NURETH-14, Toronto, Canada.

Cited by

  1. Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+ vol.25, pp.5, 2013, https://doi.org/10.6110/KJACR.2013.25.5.269
  2. Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow vol.37, pp.12, 2013, https://doi.org/10.3795/KSME-B.2013.37.12.1175
  3. Numerical Analysis of Internal Flow Distribution in Scale-Down APR+ vol.37, pp.9, 2013, https://doi.org/10.3795/KSME-B.2013.37.9.855
  4. Study on Analysis Method for Fire Safety Test of Hydrant Reducing Valve for Offshore Plant vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-A.2014.38.6.601
  5. Numerical Analysis of Flow Distribution in the Scaled-down APR+ Using Two-Equation Turbulence Models vol.27, pp.4, 2015, https://doi.org/10.6110/KJACR.2015.27.4.220