DOI QR코드

DOI QR Code

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall

강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석

  • Ahn, Tae-Woong (Environmental Application Science, Kyung Hee University) ;
  • Kim, Tae-Hoon (Environmental Application Science, Kyung Hee University) ;
  • Oh, Jong-Min (Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University)
  • 안태웅 (경희대학교 대학원 환경응용과학과) ;
  • 김태훈 (경희대학교 대학원 환경응용과학과) ;
  • 오종민 (경희대 공과대학 환경학 및 환경공학과, 환경연구센터)
  • Received : 2012.11.20
  • Accepted : 2012.12.08
  • Published : 2012.12.31

Abstract

This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.

본 연구는 강우시 불투수성 지역에서 비점오염원 유출 특성을 분석하기 위하여 수행되었다. 불투수성 지역의 강우사상 특성은 강우강도에 대한 영향을 많이 받는 것으로 나타났으며, 강우강도가 크게 작용하면, 초기강우 현상이 잘 일어나는 것으로 나타났다. 또한 선행무강우일수에 의해서 비점오염물질의 농도차가 큰 것으로 나타나, 이에 대한 대책 마련이 필요할 것으로 판단된다. 불투수성 지역의 비점오염원 유출 경향을 보면, 강우초기 유출 유량에 포함되어 유출되는 오염물질의 농도가 상대적으로 매우 높게 나타났고, 일정 시간 경과 후에는 지속되는 강우에도 불구하고 오염물질의 농도는 증가하지 않고 낮은 농도로 안정적인 유출경향을 나타내었다. 이러한 이유는 건기 시 도로 표면에 집적되어 있던 오염물질들이 강우시 초기에 유출되어 비점오염물질의 농도가 높게 나타나는 것으로 나타났다. 불투수성 지역에서 발생하는 비점 오염물질 항목별 단위면적당 오염부하량은 매우 높은 값을 나타내고 있는데, 이는 불투수성 지역의 특성상 아스팔트로 되어 있는 도로 및 주차장, 교량 등이 있는 불투수면이 대부분의 토양상부를 덮고 있기 때문에 강우시 불투수성 지역 내 모니터링 지점에서 강우가 집중되어 유출되기 때문에 비점오염물질의 유출이 증가하기 때문에 오염부하량이 증가한 것으로 판단된다. 강우시 초기세척 효과는 TSS의 경우, Event 1, Event 2에서 초기세척효과가 매우 잘 관찰되었으며, TSS> $COD_{Mn}$ >T-P 순으로 뚜렷하게 나타나는 것으로 조사되었다. TSS와 $COD_{Mn}$가 가장 민감하게 강우에 영향을 받는 것으로 나타났다. 이에 본 연구 결과를 통해 분석된 결과를 토대로 비점오염원 유출특성에 대한 다양한 데이터베이스를 구축하여 향후 비점오염원을 효율적으로 관리하는데 자료로 활용 가능할 것으로 판단된다. 또한 비점오염원을 체계적으로 관리하여 수계환경의 오염부하를 줄일 수 있는 방안을 강구해야 할 것으로 사료된다.

Keywords

References

  1. Ahn, T.W., I.S. Choi and J.M. Oh. 2009. Study on Water quality Purification Effect of Compact Wetland for Nonpoint Source Pollution Control. Journal of Korean Society of Water Science and Technology 17: 143-151.
  2. Barrett, M.E., L.B. Irish, J.F. Malina and R.J. Charbeneau. 1998. Characterization of Highway Runoff in Austin, Texas, Area. Journal of Environmental Engineering 124: 131-137. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:2(131)
  3. Becher, K.D., D.J. Schnoebelen and K.K.B. Akers. 2000. Nutrients Discharged to the Mississippi River from Eastern lowa Watershed, 1996-1997. Journal of The American Water Resources Asspcia 36: 161-173. https://doi.org/10.1111/j.1752-1688.2000.tb04257.x
  4. Ham, J.H., C.G. Yoon, J.Y. Han, H.C. Kim. 2006. Seasonal Performance of Constructed Wetland for Nonpoint Source Pollution Control. The Korean Society of Limnology 39: 471-480.
  5. Hawkins, R.H. and A.R. Hjelmfelt. 1979. Runoff probability, storm depth, and curve numbers. Journal of Irri. and Drain 111: 330-340.
  6. Heo, W.M., B.C. Kim, Y.N. Kim and K.S. Choi. 1998. Storm runoff of phosphorus from nonpoint sources Into Lake Soyang and transportation of turbid water mass within the lake. The Korean Society of Limnology 31: 1-8.
  7. Kim, J.H., H.M. Kang and S.O. Ko. 2010. Evaluation of Pollutants Concentrations and Runoff Characteristics in Highway Rest Area. Journal of Korean Society of Road Engineers 12: 131-137.
  8. Kim, L.H., B.S. Lee and S.Y. Kwon. 2007. Optimum Capacity of Retention Basin for Treating Nonpoint Pollutants and Its Removal Efficiency in Industrial Complex Areas. Journal of Korean Wetlands Society 7: 75-85.
  9. Kim, L.H. and J.H. Kang. 2004. Determination of Event Mean Concentrations and Pollutant Loadings in Highway Storm Runoff. Journal of Korean Society on Water Quality 20: 631-640.
  10. Kim, L.H. and S.H. Lee. 2005. Characteristics of Washedoff Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms. Journal of Korean Society on Water Quality 21: 248-255.
  11. Kim, S.K., Y.I. Kim, S.W. Kang, S.L. Yun and S.J. Kim. 2006. Runoff Characteristics of Non-Point Sources on the Stormwater. Journal of Korean Society of Environmental Engineers 28: 104-110.
  12. Kim, S.S., J.S. Kim, K.Y. Bang, E.M. Gwon and W.J. Chung. 2002. The Estimation of the Unit Load and Chracteristics of Non-Point Source Discharge According to Rainfall in Kyongan Watershed. Journal of Korean Society of Environmental Engineers 24: 2019-2027.
  13. Kim, Y.C. and J.S. Lee. 2002. Shapes of the Pollutograph versus Types of Watershed during Rainfall Events. Journal of Korean Society of Environmental Engineers 24: 633-645.
  14. Kwon, K.H. 2011. Characterization of Runoff properties of non-point pollutant from various landuse watersheds and evaluation of BMPs, Kyungpook National University, pp. 55-62.
  15. Lee, J.Y., S.H. Jang and J.S. Park. 2008. Analyzing Runoff Pollutant Roading Characteristics of Non-Point Source During Rainfall in Urban Area. Journal of Korean Society of Water Science and Technology 16: 35-44.
  16. Lee, S.Y., E.J. Lee, Marla C. Maniquiz and L.H. Kim. 2008. Determination of Pollutant Unit Loads from Various Transportation Landuses. Journal of Korean Society on Water Quality 24: 543-549.
  17. Polls, I. and R. Lanyon. 1980. Pollutant concentration from homogeneous land uses. Journal of Environmental Engineering, ASCE 106: 69-80.
  18. Sartor, J.D., G.B. Boyd and F.J. Agardy. 1974. Water pollution aspects of street surface contaminants. Journal of WPCF 46: 458-467.
  19. Wee, S.K., L.H. Kim, Y.J. Jung and K.I. Gil. 2008. Washoff Characteristics and Correlation of Nonpoint pollutants in a Bridge Storm Runoff. Journal of Korean Society on Water Quality 24: 378-382.
  20. Whipple, W., J.V. Hunter and S.L. Yu. 1977. Nonpoint sources and planning for water planning for water pollution control. Journal of WPCF 21: 15-23.
  21. Wu, J.S., C.J. Allarn, W.L. Saunders and J.B. Evett. 1998. Characterization and pollutant loading estimation for highway runoff. Journal of Environmental Engineering 124: 584-592. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:7(584)
  22. Zhi-Qiang, D., L.M.PL. Joao and P.S. Vijay. 2005. Fractional kinetic model for first of stormwater pollutants. Journal of Environmental Engineering 126: 313-320.
  23. Zhuang, Y., T. Nguyen, B. Niu, E. Shao and S. Hong. 2012. Research Trends in Non Point Source during 1975-2010. Physics Procedia 33: 138-143. https://doi.org/10.1016/j.phpro.2012.05.041