DOI QR코드

DOI QR Code

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode

공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Jin, Seok-Hwan (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 공과대학 화공시스템공학과) ;
  • 진석환 (창원대학교 공과대학 화공시스템공학과)
  • Received : 2012.11.30
  • Accepted : 2012.12.16
  • Published : 2012.12.30

Abstract

Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

고분자 전해질막 연료전지는 연료극의 연료와 공기극의 공기에 각각 $H_2S$$SO_2$이 포함되어 있을 때 그 성능이 심각하게 감소한다. 본 연구는 고분자전해질막 연료전지의 공기극과 연료극에 1 ppm에서 10 ppm의 불순물 가스를 공급하여 전기적 성능측정을 통해 복합적인 황불순물이 단위전지에 미치는 영향을 확인하였다. 최적의 운전조건에서 불순물가스를 피독하였을 때 $SO_2$$H_2S$의 농도가 증가할수록 성능이 급격히 감소하였다(단위전지 온도 $65^{\circ}C$, 상대습도 100%). 그리고 황의 흡착은 MEA의 백금 촉매층 표면서 일어나며, 불순물 가스가 MEA에 누적되는 것을 확인하였다. 1, 3, 5, 및 10 ppm 4회의 연속적인 피독 후 연료전지의 성능이 0.71 V에서 0.54 V(76 %)로 감소하였다.

Keywords

References

  1. R. Mohtadi, W. K. Lee, S. Cowan, J. W. Van Zee, and M. Murthy, Effects of Hydrogen Sulfide on the Performance of a PEMFC, Electrochem. and Solid-State Letters, 6, A272 (2003).
  2. S. H. Seo and C. S. Lee, "Performance Analysis of Polymer Electrolyte Membrane Fuel cell by AC Impedance Measurement", Trans. Kor, Hydrogen and New Energy Soc., 20(4), 283(2009).
  3. R. Mohtadi, W.-K. Lee, S. Cowan, J. W. Van Zee, and M. Murthy, Effects of Hydrogen Sulfide on the Performance of a PEMFC, Electrochem. and Solid-State Letters, 6, A272 (2003).
  4. T. A. Zawodzinski, C. Karuppaiah, F. A. Uribe, and S. Gottesfeld. In Electrode Materials and Processes for Energy Conversion and Storage; Proceedings of the Electrochemical Society, 97. The Electrochemical Society, Pennington, 139 (1997).
  5. M. Wilson, C. Derouin, J. Valerio, and S. Gottesfeld. Proceedings of the Intersociety Energy Conversion Engineering Conference, Atlanta, Georgia, 1, 1203 (1993).
  6. H. Lee, J. H. Song, K. J. Kim, S. H. Kim, B. K. Ahn, T. W. Lim, and K. P. Park. Decrease of PEMFC Performance by SO2 in Air, J. Kor. Chem. Eng. Res., 48(3), 311 (2010).
  7. F. Uribe, W. Smith, M. Wilson, J. Valerio, and T. Rockward, Electrodes for Polymer Electrolyte Membrane Operation on Hydrogen/ Air and Reformate/Air, Hydrogen, Fuel Cells, and Infrastructure Technologies (2003).
  8. F. Jing, M. Hou, W. Shi, J. Fu, H. Yu, P. Ming, and B. Yi, The Effect of Ambient Contamination on PEMFC Performance, J. Power Sources, 166(1), 72(2007).
  9. T. Loucka, Adsorption and Oxidation of Sulfur and of Sulfur Dioxide at the Platinum Electrode, J. Electroanal. Chem., 31, 319 (1971).
  10. T. Loučka, The Adsorption of Sulfur and Simple Organic Substances on Platinum Electrodes, J. Electroanal. Chem., 36, 369 (1972).
  11. A. Q. Contractor, and H. Lal, Two Forms of Chemisorbed Sulfur on Platinum and Related Studies, J. Electroanal. Chem., 96, 175 (1979).
  12. S. Lee, S. H. Jin, Single Cell Performance Recovery of SO2 Poisioned PEMFC using Cyclic Voltametry, J. of Kor. Oil Chemists Soc., 28(4), 497 (2011).
  13. S. Lee, S. H. Jin, Study on the Performance Recovery of H2S Poisoned PEMFC, J. of Kor. Oil Chemists Soc., 29(1), 102 (2012).
  14. S. Lee, S. H. Jin, The Performance of PEMFC after Hydrogen Sulfide Poisoning under Various Operating Conditions, J. of Kor. Oil Chemists Soc., 28(1), 57 (2011).