DOI QR코드

DOI QR Code

Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study

  • De Oliveira, Greison Rabelo (Department of Oral and Maxillofacial Surgery, State University of West Parana) ;
  • Pozzer, Leandro (Division of Oral and Maxillofacial Surgery, Department of Oral Diagnosis, State University of Campinas Pracicaba Dental School) ;
  • Cavalieri-Pereira, Lucas (Division of Oral and Maxillofacial Surgery, Department of Oral Diagnosis, State University of Campinas Pracicaba Dental School) ;
  • De Moraes, Paulo Hemerson (Division of Oral and Maxillofacial Surgery, Department of Oral Diagnosis, State University of Campinas Pracicaba Dental School) ;
  • Olate, Sergio (Division of Oral and Maxillofacial Surgery, Department of Dentistry, University of La Frontera School of Medicine) ;
  • De Albergaria Barbosa, Jose Ricardo (Division of Oral and Maxillofacial Surgery, Department of Oral Diagnosis, State University of Campinas Pracicaba Dental School)
  • Received : 2012.09.30
  • Accepted : 2012.11.25
  • Published : 2012.12.31

Abstract

Purpose: Several parameters have been described for determining the success or failure of dental implants. The surface properties of transgingival implant components have had a great impact on the long-term success of dental implants. The purpose of this study was to compare the tendency of two periodontal pathogens to adhere to and colonize zirconia abutments and titanium alloys both in hard surfaces and soft tissues. Methods: Twelve patients participated in this study. Three months after implant placement, the abutments were connected. Five weeks following the abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsies were performed. The abutments and gingival biopsies taken from the buccal gingiva were analyzed using real-time polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated using the sessile water drop method before replacement. Data analyses used the Mann Whitney U-test, and P-values below 0.05 find statistical significance. Results: The present study showed no statistically significant differences between the DNA copy numbers of A. actinomycetemcomitans, P. gingivalis, and total bacteria for both the titanium and zirconia abutments and the biopsies taken from their buccal gingiva. The differences between the free surface energy of the abutments had no influence on the microbiological findings. Conclusions: Zirconia surfaces have comparable properties to titanium alloy surfaces and may be suitable and safe materials for the long-term success of dental implants.

Keywords

References

  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  2. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 1997;8:161-72.
  3. Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res 1990;1:33-40.
  4. Heijdenrijk K, Raghoebar GM, Meijer HJ, Stegenga B, van der Reijden WA. Feasibility and influence of the microgap of two implants placed in a non-submerged procedure: a five-year follow-up clinical trial. J Periodontol 2006;77: 1051-60.
  5. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002; 73:322-33.
  6. Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992;3:9-16.
  7. Lang NP, Bragger U, Walther D, Beamer B, Kornman KS. Ligature-induced peri-implant infection in cynomolgus monkeys. I. Clinical and radiographic findings. Clin Oral Implants Res 1993;4:2-11.
  8. Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 1990;5:31-8.
  9. Sumida S, Ishihara K, Kishi M, Okuda K. Transmission of periodontal disease-associated bacteria from teeth to osseointegrated implant regions. Int J Oral Maxillofac Implants 2002;17:696-702.
  10. Grossner-Schreiber B, Griepentrog M, Haustein I, Muller WD, Lange KP, Briedigkeit H, et al. Plaque formation on surface modified dental implants. An in vitro study. Clin Oral Implants Res 2001;12:543-51.
  11. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 1996;7:201-11.
  12. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94.
  13. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 2002;17:793-8.
  14. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 1993;43:245-53.
  15. Steinberg D, Sela MN, Klinger A, Kohavi D. Adhesion of periodontal bacteria to titanium, and titanium alloy powders. Clin Oral Implants Res 1998;9:67-72.
  16. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25.
  17. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004;75:292-6.
  18. Heuer W, Elter C, Demling A, Neumann A, Suerbaum S, Hannig M, et al. Analysis of early biofilm formation on oral implants in man. J Oral Rehabil 2007;34:377-82.
  19. Consensus report. Periodontal diseases: pathogenesis and microbial factors. Ann Periodontol 1996;1:926-32.
  20. van Winkelhoff AJ, Goene RJ, Benschop C, Folmer T. Early colonization of dental implants by putative periodontal pathogens in partially edentulous patients. Clin Oral Implants Res 2000;11:511-20.
  21. Rudney JD, Chen R, Sedgewick GJ. Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in buccal epithelial cells collected from human subjects. Infect Immun 2001;69:2700-7.
  22. Image J [Internet]. Bethesda: National Institutes of Health; [c2012] [2012 Apr 4]. Available from: http://rsbweb.nih.gov/ij/ .
  23. van Oss CJ. Interfacial forces in aqueous media. 2nd ed. Boca Raton: Talyor & Francis; 2006.
  24. Wei YH, Lai HC, Chen SY, Yeh MS, Chang JS. Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMdeltaR defective in SpnR, a quorum-sens ing LuxR family protein. Biotechnol Lett 2004;26:799-802.
  25. Lau L, Sanz M, Herrera D, Morillo JM, Martin C, Silva A. Quantitative real-time polymerase chain reaction versus culture: a comparison between two methods for the detection and quantification of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythensis in subgingival plaque samples. J Clin Periodontol 2004;31:1061-9.
  26. Loe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol 1965;36:177-87.
  27. Hickey JS, O'Neal RB, Scheidt MJ, Strong SL, Turgeon D, Van Dyke TE. Microbiologic characterization of ligature-induced peri-implantitis in the microswine model. J Periodontol 1991;62:548-53.
  28. Berglundh T, Lindhe J, Marinello C, Ericsson I, Liljenberg B. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res 1992;3:1-8.
  29. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 1990;17: 138-44.
  30. Quirynen M, van der Mei HC, Bollen CM, Schotte A, Marechal M, Doornbusch GI, et al. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res 1993; 72:1304-9.
  31. Guilherme AS, Henriques GE, Zavanelli RA, Mesquita MF. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols. J Prosthet Dent 2005;93:378-85.
  32. Quirynen M, Van der Mei HC, Bollen CM, Van den Bossche LH, Doornbusch GI, van Steenberghe D, et al. The influence of surface-free energy on supra- and subgingival plaque microbiology. An in vivo study on implants. J Periodontol 1994;65:162-7.

Cited by

  1. Implications of Surface and Bulk Properties of Abutment Implants and Their Degradation in the Health of Periodontal Tissue vol.6, pp.12, 2012, https://doi.org/10.3390/ma6125951
  2. Internal bacterial colonization of implants: association with peri‐implant bone loss vol.26, pp.8, 2012, https://doi.org/10.1111/clr.12421
  3. Interaction of titanium, zirconia and lithium disilicate with peri-implant soft tissue: study protocol for a randomized controlled trial vol.16, pp.1, 2012, https://doi.org/10.1186/s13063-015-0979-4
  4. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings vol.20, pp.7, 2012, https://doi.org/10.1007/s00784-015-1655-5
  5. Prevalence of Porphyromonas gingivalis fimA genotypes in peri-implant sulcus of Koreans using new primer vol.46, pp.1, 2012, https://doi.org/10.5051/jpis.2016.46.1.35
  6. Bacterial adhesion and biofilm formation on yttria-stabilized, tetragonal zirconia and titanium oral implant materials with low surface roughness - an in situ study vol.65, pp.7, 2012, https://doi.org/10.1099/jmm.0.000267
  7. In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces vol.88, pp.3, 2012, https://doi.org/10.1902/jop.2016.160245
  8. Dicationic Imidazolium-Based Ionic Liquid Coatings on Zirconia Surfaces: Physico-Chemical and Biological Characterization vol.8, pp.4, 2017, https://doi.org/10.3390/jfb8040050
  9. In Vitro Evaluation of Bacterial Adhesion and Bacterial Viability of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis on the Abutment Surface of Titanium and Zirconium Denta vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/4292976
  10. Differential Healing Patterns of Mucosal Seal on Zirconia and Titanium Implant vol.10, pp.None, 2019, https://doi.org/10.3389/fphys.2019.00796
  11. Relevance of Topographic Parameters on the Adhesion and Proliferation of Human Gingival Fibroblasts and Oral Bacterial Strains vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/8456342
  12. Long‐Term Survival and Peri‐Implant Health of Titanium Implants with Zirconia Abutments: A Systematic Review and Meta‐Analysis vol.28, pp.8, 2012, https://doi.org/10.1111/jopr.13097
  13. A 3‐year longitudinal prospective study assessing microbial profile and clinical outcomes of single‐unit cement‐retained implant restorations: Zirconia versus titanium abutments vol.22, pp.3, 2020, https://doi.org/10.1111/cid.12888
  14. In vitro adherence of Candida albicans to zirconia surfaces vol.26, pp.5, 2012, https://doi.org/10.1111/odi.13319
  15. Early and mature biofilm on four different dental implant materials: An in vivo human study vol.31, pp.11, 2012, https://doi.org/10.1111/clr.13656
  16. Designing an immunoinformatic vaccine for peri-implantitis using a structural biology approach vol.29, pp.1, 2012, https://doi.org/10.1016/j.sjbs.2021.09.041