DOI QR코드

DOI QR Code

폴리머 층 전사 및 처짐 현상을 이용한 곡선 형태의 PMMA 나노채널 제작

Curve-typed PMMA Nanochannel Fabrication using Polymer Layer Transfer and Collapse Technique

  • 조영학 (서울과학기술대학교 기계설계자동화공학부) ;
  • 김성동 (서울과학기술대학교 기계설계자동화공학부) ;
  • 황지홍 (서울과학기술대학교 제품설계금형공학과)
  • Cho, Young-Hak (School of Mechanical Design & Automation Engineering, Seoul Nat'l Univ. of Sci. & Tech.) ;
  • Kim, Sung-Dong (School of Mechanical Design & Automation Engineering, Seoul Nat'l Univ. of Sci. & Tech.) ;
  • Hwang, Ji-Hong (Department of Product Design & Manufacturing Engineering, Seoul Nat'l Univ. of Sci. & Tech.)
  • 투고 : 2011.07.25
  • 심사 : 2011.09.20
  • 발행 : 2012.01.01

초록

We present a simple and low-cost method to fabricate poly(methyl-methacrylate) (PMMA) nanochannels with various shapes by combining the standard optical lithography with a PMMA layer transfer and collapse technique. We utilized PMMA membrane reflowing/collapsing phenomena into microchannels to fabricate nanochannels at both corners of arbitrarily-shaped microchannels. This allows nanochannels with various shapes such as curved nanochannels as well as straight nanochannels to be easily fabricated since the shape of the microchannel determines the shape of the nanochannels. This nanochannel fabrication method is simple, flexible, and low-cost since the standard optical lithography with low-resolution optical masks can be used to fabricate nanoscale channels as small as 100 nm wide with various shapes. Also, the sealing of nanochannels can be naturally achieved while the nanochannels are formed through the polymer layer transfer and collapse.

키워드

참고문헌

  1. Huh, D., Mills, K. L., Zhu, X., Burns, M. A., Thouless, M. D. and Takayama, S., "Tuneable elastomeric nanochannels for nanofluidic manipulation," Nature Materials, Vol. 6, No. 6, pp. 424-428, 2007. https://doi.org/10.1038/nmat1907
  2. Craighead, H. G., "Future lab-on-a-chip technologies for interrogating individual molecules," Nature, Vol. 442, No. 7101, pp. 387-393, 2006. https://doi.org/10.1038/nature05061
  3. Tegenfeldt, J. O., Prinz, C., Cao, H., Reisner, W. W., Riehn, R., Wang, Y. M., Cox, E. C., Sturm, J. C., Silberzan, P. and Austin, R. H., "The dynamics of genomic-length DNA molecules in 100-nm channels," Proc. Natl. Acad. Sci. USA, Vol. 101, No. 30, pp. 10979-10983, 2004. https://doi.org/10.1073/pnas.0403849101
  4. Jo, K., Dhingra, D. M., Odijk, T., de Pablo, J. J., Graham, M. D., Runnheim, R., Forrest, D. and Schwartz, D. C., "A single-molecule barcoding system using nanoslits for DNA analysis," Proc. Natl. Acad. Sci. USA, Vol. 104, No. 8, pp. 2673-2678, 2007. https://doi.org/10.1073/pnas.0611151104
  5. Mannion, J. T., Reccius, C. H., Cross, J. D. and Craighead, H. G., "Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels," Biophys. J., Vol. 90, No. 12, pp. 4538-4545, 2006. https://doi.org/10.1529/biophysj.105.074732
  6. Abgrall, P. and Nguyen, N. T., "Nanofluidic devices and their applications," Anal. Chem., Vol. 80, No. 7, pp. 2326-2341, 2008. https://doi.org/10.1021/ac702296u
  7. Perry, J. L. and Kandlikar, S. G., "Review of fabrication of nanochannels for single phase liquid flow," Microfluid. Nanofluid., Vol. 2, No. 3, pp. 185- 193, 2006. https://doi.org/10.1007/s10404-005-0068-1
  8. Riehn, R., Lu, M. C., Wang, Y. M., Lim, S. F., Cox, E. C. and Austin, R. H., "Restriction mapping in nanofluidic devices," Proc. Natl. Acad. Sci. USA, Vol. 102, No. 29, pp. 10012-10016, 2005. https://doi.org/10.1073/pnas.0503809102
  9. Wang, K. G., Yue, S., Wang, L., Jin, A., Gu, C., Wang, P., Wang, H., Xu, X., Wang, Y. and Niu, H., "Manipulating DNA molecules in nanofluidic channels," Microfluid. Nanofluid., Vol. 2, No. 1, pp. 85-88, 2006. https://doi.org/10.1007/s10404-005-0057-4
  10. Tamaki, E., Hibara, A., Kim, H. B., Tokeshi, M. and Kitamori, T., "Pressure-driven flow control system for nanofluidic chemical process," J. Chromatogr. A, Vol. 1137, No. 2, pp. 256-262, 2006. https://doi.org/10.1016/j.chroma.2006.10.097
  11. Reano, R. M. and Pang, S. W., "Sealed threedimensional nanochannels," J. Vac. Sci. Technol. B, Vol. 23, No. 6, pp. 2995-2999, 2005. https://doi.org/10.1116/1.2121728
  12. Zhang, L., Gu, F. X., Tong, L. M. and Yin, X. F., "Simple and cost-effective fabrication of twodimensional plastic nanochannels from silica nanowire templates," Microfluid. Nanofluid., Vol. 5, No. 6, pp. 727-732, 2008. https://doi.org/10.1007/s10404-008-0314-4
  13. Cao, H., Yu, Z. N., Wang, J., Tegenfeldt, J. O., Austin, R. H., Chen, E., Wu, W. and Chou, S. Y., "Fabrication of 10 nm enclosed nanofluidic channels," Appl. Phys. Lett., Vol. 81, No. 1, pp. 174-176, 2002. https://doi.org/10.1063/1.1489102
  14. Guo, L. J., Cheng, X. and Chou, C. F., "Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching," Nano Letters, Vol. 4, No. 1, pp. 69-73, 2004. https://doi.org/10.1021/nl034877i
  15. Dumond, J, J., Low, H. Y. and Rodriguez, I., "Isolated, sealed nanofluidic channels formed by combinatorialmould nanoimprint lithography," Nanotechnology, Vol. 17, No. 8, pp. 1975-1980, 2006. https://doi.org/10.1088/0957-4484/17/8/030
  16. Schulz, H., Lyebyedyev, D., Scheer, H. C., Pfeiffer, K., Bleidiessel, G., Grutzner, G. and Ahopelto, J., "Master replication into thermosetting polymers for Nanoimprinting," J. Vac. Sci. Technol. B, Vol. 18, No. 6, pp. 3582-3585, 2000. https://doi.org/10.1116/1.1319821
  17. Langford, R. M., Nellen, P. M., Gierak, J. and Fu, Y. Q., "Focused ion beam micro- and nanoengineering," MRS Bulletin, Vol. 32, No. 5, pp. 417-423, 2007. https://doi.org/10.1557/mrs2007.65
  18. Lee, C., Yang, E. H., Myung, N. V. and George, T., "A nanochannel fabrication technique without nanolithography," Nano Letters, Vol. 3, No. 10, pp. 1339-1340, 2003. https://doi.org/10.1021/nl034399b
  19. Han, A. P., de Rooij, N. F. and Staufer, U., "Design and fabrication of nanofluidic devices by surface micromachining," Nanotechnology, Vol. 17, No. 10, pp. 2498-2503, 2006. https://doi.org/10.1088/0957-4484/17/10/010
  20. Cho, Y. H., Lee, S. W., Kim, B. J. and Fujii, T., "Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection," Nanotechnology, Vol. 18, No. 46, Paper No. 465303, 2007. https://doi.org/10.1088/0957-4484/18/46/465303
  21. Park, K. D., Lee, S. W., Takama, N., Fujii, T. and Kim, B. J., "Arbitrary-shaped nanochannels fabricated by polymeric deformation to achieve single DNA stretching," Microelectronic Engineering, Vol. 86, No. 4-6, pp. 1385-1388, 2009. https://doi.org/10.1016/j.mee.2009.02.003
  22. Hui, C. Y., Jagota, A., Lin, Y. Y. and Kramer, E. J., "Constraints on microcontact printing imposed by stamp deformation," Langmuir, Vol. 18, No. 4, pp. 1394-1407, 2002. https://doi.org/10.1021/la0113567
  23. Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. and Ueda, Y., "The lowest surface free energy based on -$CF_{3}$ alignment," Langmuir, Vol. 15, No. 13, pp. 4321-4323, 1999. https://doi.org/10.1021/la981727s
  24. Park, H., Li, H. and Cheng, X., "Optimizing nanoimprint and transfer-bonding techniques for three-dimensional polymer microstructures," J. Vac. Sci. Technol. B, Vol. 25, No. 6, pp. 2325-2328, 2007. https://doi.org/10.1116/1.2804518

피인용 문헌

  1. Thermoplastic Fusion Bonding of UV Modified PMMA Microfluidic Devices vol.31, pp.5, 2014, https://doi.org/10.7736/KSPE.2014.31.5.441