DOI QR코드

DOI QR Code

Effect of Additional Water on Durability and Pore Size Distribution in Cement Mortar

단위수량 증가에 따른 시멘트 모르타르의 내구성능과 공극분포에 관한 연구

  • 권성준 (한남대학교 건설시스템공학과) ;
  • 이학수 (한남대학교 건설시스템공학과) ;
  • 박선규 (목원대학교 공과대학 건축학부)
  • Received : 2012.01.26
  • Accepted : 2012.03.29
  • Published : 2012.05.30

Abstract

Porosity in concrete has close relationship with durability characteristics. Additionally mixed water can help easy mixing and workability but causes increased porosity, which yields degradation of durability performance. In this paper, cement mortar samples with 0.45 of w/c (water to cement ratio) are prepared and durability performances are evaluated with additional water from 0.45 to 0.60 of w/c. Various durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed. Then they are analyzed with changing porosity. Changing ratios and the patterns of durability performance are quantitatively evaluated considering pore size distribution, total porosity, and additional water content.

콘크리트내의 공극률은 콘크리트 구조물의 내구적인 특성과 밀접한 관련성이 있다. 특히, 콘크리트 시공시 가수된 물은 콘크리트의 비빔과 작업성에 일시적으로 도움이 되지만, 이러한 가수는 콘크리트의 공극을 증가하게 하며, 이는 콘크리트 구조물의 내구적인 성능저하를 야기하게 된다. 본 연구에서는 물시멘트비 0.45의 시멘트 모르타르에 대하여, 단위수량을 증가시켜 물멘트비를 0.45에서 0.60으로 증가시키면서 내구성능을 평가하였다. 즉, 각 물시멘트별로 소정의 재령까지 양생한 시험체에 대하여 강도, 염화물 확산, 투기성, 포화도 및 수분 확산계수 등의 다양한 내구성 실험을 수행하였으며, 이러한 실험결과들은 변화하는 공극률과 함께 분석되었다. 또한 내구성능의 변화 비율 및 그 패턴은 공극분포, 공극률, 그리고 단위수량을 고려하여 정량적으로 평가되었다.

Keywords

References

  1. 소형석, 소양섭, "포졸란재 함유 콘크리트의 투수 및 투기성과 염화물이온 투과성", 대한건축학회지, 제19권 11호, 2003, pp.117-124.
  2. 송하원, 권성준, 변근주, 박찬규, "혼화재를 사용한 고성능 콘크리트의 배합특성을 고려한 염화물 확산 해석기법에 관한 연구", 대한토목학회 논문집, 제25권 1A호, 2005, pp.213-223.
  3. Bungey, J. H., Millard, S. G., Testing of Concrete in Structures, Blackie Acrdemic & Professional, 1996.
  4. Concrete Society, Permeability Testing of Site Concrete-A Review of Methods and Experiments, Technical Report No. 31, London, 1987.
  5. Dhir, R. K., Hewlett, P. C., Chan, Y. N., "Near Surface Characteristics of Concrete: Intrinsic Permeability", Magazine of Concrete Research, vol. 41, 1988, pp.87-97.
  6. Harry, K. G., Johnson, A., "A Non-Destructive Technique for Measuring Ceramic Porosity using Liquid Nitrogen", Cement and Concrete Research, vol. 31, 2004, pp.1564-1575.
  7. Hedenblad, G., "The Use of Mercury Intrusion Porosimetry or Helium Porosity to Predict the Moisture Transport Properties of Hardened Cement Paste", Advanced Cement Based Materials, vol. 6, 1997, pp.123-129. https://doi.org/10.1016/S1065-7355(97)90019-5
  8. Houst, Y., Wittmann, F. H., "The Diffusion of Carbon Dioxide and Oxygen in Aerated Concrete", International Collaboration on Material Science and Restoration, Technische Akademie, Esslingen, 1986.
  9. Ishida, T., Maekawa, K., "Modeling of PH Profile in Pore Water based on Mass Transport and Chemical Equilibrium Theory", Concrete Library of JSCE, vol. 37, 2001, pp.151-166.
  10. Ishida, T., Maekawa, K., Kishi, T., "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History", Cement and Concrete Research, vol. 37, 2007, pp.565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
  11. Ishida, T., Maekawa, K., "Modeling of Durability Performance of Cementitious Materials and Structures based on Thermo-hygro Physics", RILEM PRO 29, Life Prediction and Aging Management of Concrete Structures, 2003, pp.39-49.
  12. Ishida, T., Soltani, M., Maekawa. K., "Influential Parameters on the Theoretical Prediction of Concrete Carbonation Process", Proceedings. 4th International Conference on Concrete Under Severe Conditions, Seoul, Korea 2004, pp.205-212.
  13. Jung, S. H., Diffusivity of Carbon Dioxide and Carbonation in Concrete through Development of Gas Diffusion Measuring System, Ph.D. dissertation, Dept. of Civil Engineering, Seoul National University, Korea, 2002.
  14. Kumar, R., Bhattacharjee, B., "Study on Some Factors Affecting the Results in the Use of MIP Method in Concrete Research", Cem Concr Res 33, 2003, pp.417-424. https://doi.org/10.1016/S0008-8846(02)00974-2
  15. Kwon, S.-J., Song, H.-W., "Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling", Cement and Concrete Research, vol. 40, 2010, pp.119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  16. Maekawa, K., Ishida, T., "Modeling of Structural Performances Under Coupled Environmental and Weather Actions", Materials and Structures, vol. 35, 2002, pp.594-602.
  17. Maekawa, K., Ishida, T., Kishi, T., "Multi-Scale Modeling of Structural Concrete", London and New York, Taylor & Francis, 2009.
  18. Maekawa, K., Ishida, T., Kishi, T., "Multi-Scale Modeling of Concrete Performance", Journal of Advanced Concrete Technology, vol. 1, 2003, pp.91-126. https://doi.org/10.3151/jact.1.91
  19. Metha, K., Monteiro, P. J. M., "Concrete: Structure, Properties, and Materials", vol. 2, Prentice Hall, New Jersy. 1993.
  20. Neithalath, N., "Analysis of Misture Tansport in Mortar and Concrete Using Sorption-Diffusion approach", ACI Materials Journal, vol. 103, 2006, pp.209-217.
  21. Neville, A., Properties of Concrete, 4th Ed. Longman (revised), 1996.
  22. Ngala, V. T., Page, C. L., "Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Cement Paste", Cement and Concrete Research, vol. 27, 1997, pp.995-1007. https://doi.org/10.1016/S0008-8846(97)00102-6
  23. Nyame, B. K., Illston, J. M., "Relationship between Permeability and Pore Structure of Hardened Cement Paste", Magazine of Concrete Research, vol. 33, 1981, pp.139-146. https://doi.org/10.1680/macr.1981.33.116.139
  24. Otsuki, N., Nagatataki, S., Nakashita, K., "Evaluation of $AgNO_3$ Solution Spray Method for Measurement of Chloride Penetration into Hardened Cementitious Matrix Materials", ACI Materials Journal, vol. 89, 1992, pp.587-592.
  25. Papadakis, V. G., Vayenas, C. G., Fardis, M. N., "Fundamental Modeling and Experimental Investigation of Concrete Carbonation", ACI Materials Journal, vol. 88, 1991, pp.363-373.
  26. Parrot, L. J., "Effect of Changes in UK Cements upon Strength and Recommended Curing Times", Concrete, vol. 19, 1985, pp.22-24.
  27. Price, H. C., "Factors Influencing Concrete Strength", ACI Materials Journal, vol. 47, 1951, pp.417-432.
  28. Song, H.-W., Cho, H. J., Park, S. S., Byun, K. J., Maekawa, K., "Early-Age Cracking Resistance Evaluation of Concrete Structure", Concrete Science Engineering, vol. 3, 2001, pp.62-72.
  29. Song, H.-W., Kwon, S.-J., "Permeability Characteristics of Carbonated Concrete Considering Capillary Pore Structure", Cement and Concrete Research, vol. 37, 2007, pp.909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
  30. Song, H.-W., Kwon, S.-J., Byun, K. J., Park, C. K., "Predicting Carbonation in Early-Aged Cracked Concrete", Cement and Concrete Research, vol. 36, 2006, pp.979-989. https://doi.org/10.1016/j.cemconres.2005.12.019
  31. Tang, L., Nilsson, L. O., "A Study of the Quantitative Relationship between Permeability and Pore Size Distribution of Hardened Cement Pastes", Cement and Concrete Research, vol. 22, 1992, pp.541-550. https://doi.org/10.1016/0008-8846(92)90004-F
  32. Tang, L., Nilsson, L. O., "Chloride Binding Capacity and Binding Isotherms of OPC Paste and Mortar", Cement and Concrete Research, vol. 23, 1993, pp.347-353. https://doi.org/10.1016/0008-8846(93)90100-N
  33. Whiting, D., Permeability of Selected Concrete. in Permeability of Concrete, ACI Special Publication, SP-108, Detroit,1988, pp.195-222.

Cited by

  1. Modeling on Chloride Diffusivity in Concrete with Isotropic and Anisotropic Crack vol.17, pp.6, 2013, https://doi.org/10.11112/jksmi.2013.17.6.104