DOI QR코드

DOI QR Code

Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites

  • Cho, Mi-Jung (Department of Wood Science and Technology, Kyungpook National University) ;
  • Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University) ;
  • Kadla, John F. (Department of Wood Science, University of British Columbia)
  • Received : 2011.12.09
  • Accepted : 2012.03.24
  • Published : 2012.03.25

Abstract

Cellulose nanowhisker (CNW) isolated from hardwood bleached kraft pulp (HW-BKP) using sulfuric acid hydrolysis was suspended in polyvinyl alcohol (PVA) and electrospun into composites nanofibers. Transmission electron microscopy (TEM) revealed the CNW to be rod-like, approximately of $16.1{\pm}4.6$ nm wide and $194{\pm}61$ nm long, providing an aspect ratio of about 12, with a particle size distribution range of $662.2{\pm}301.2$ nm. Uniform and high quality CNW/PVA composite nanofibers were successfully manufactured by the electrospinning method. As the CNW loading increases, the viscosity of CNW/PVA solutions shows a minimum at 1% CNW level which subsequently results in the smallest diameter (193 nm) of electrospun nanofibers. The average diameter of the nanofibers increased up to 284 nm with increasing CNW loading. These results suggest that the electrospinning method provides a great potential of manufacturing consistent and reliable nanofibers from CNW/PVA solution for the formation of scaffolds with potentials in future application.

Keywords

References

  1. Baumgarten, P. K. 1971. Electrostatic spinning of acrylic microfibers. J. Colloid. Interf. Sci. 36: 71∼79. https://doi.org/10.1016/0021-9797(71)90241-4
  2. Charernsriwilaiwat, N., P. Opanasopit, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol. 2010. Preparation and characterization of chitosan-hydroxybensotriazole/ polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohyd. Polym. 81: 675-680. https://doi.org/10.1016/j.carbpol.2010.03.031
  3. Cho, M.-J. and B.-D. Park. 2011. Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J. Indus. Eng. Chem. 17(1): 36-40. https://doi.org/10.1016/j.jiec.2010.10.006
  4. Chronakis, I. S. 2005. Novelnanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review. J. Mater. Process. Technol. 167: 283-293. https://doi.org/10.1016/j.jmatprotec.2005.06.053
  5. Doshi, J. and D. H. Reneker. 1995. Electrospinning process and applications of electrospun fibers, J. Electrostatics 35: 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  6. Eichhorn, S. J., A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs. 2010. Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci. 45: 1-33. https://doi.org/10.1007/s10853-009-3874-0
  7. Favier, V., G. R. Canova, J. Y. Cavaille, H. Chanzy, A. Dufresne, and C. Gauthier. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Tech. 6: 351-355. https://doi.org/10.1002/pat.1995.220060514
  8. Hamad, W. 2002. Cellulosic materials: Fibers, Networks and Composite, Kluwer Academic Publisher, Massachusetts.
  9. Huang, Z.-M., Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna. 2003. A review of polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Tech. 63: 2223-2253 https://doi.org/10.1016/S0266-3538(03)00178-7
  10. Jeong, J. S., J. S. Moon, S. Y. Jeon, J. H. Park, P. S. Alegaonkar, and J. B. Yoo. 2007. Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films 515: 5136-5141. https://doi.org/10.1016/j.tsf.2006.10.058
  11. Kvien, I., B. S. Tanem, and K. Oksman. 2005. Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules 6: 3160-3165. https://doi.org/10.1021/bm050479t
  12. Li, L. and Y.-L. Hsieh. 2006. Chitosan biocomponent nanofibers and nanoporous fibers. Carbohyd. Res. 341: 374-381. https://doi.org/10.1016/j.carres.2005.11.028
  13. Marchessault, R. H., F. F. Morehead, and N. M. Walter. 1959. Liquid crystal systems from fibrillar polysaccharides, Nature 184: 632-633. https://doi.org/10.1038/184632a0
  14. Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: measurement techniques and their impact of interpreting cellulose performance, Biotechnology for Biofuels 3: 10. https://doi.org/10.1186/1754-6834-3-10
  15. Peresin, M. S., Y. Habibi, J. O. Zoppe, J. J. Pawlak, and O. J. Rojas. 2010. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization, Biomacromol. 11: 674-681. https://doi.org/10.1021/bm901254n
  16. Ranby, B. G. 1952. The cellulose micelles, Tappi 35: 53-58.
  17. Revol, J.-F., H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray. 1992. Helicoidal selfordering of cellulose microfibrils in aqueous suspension, Int. J. Biological Macromol. 14: 170-172. https://doi.org/10.1016/S0141-8130(05)80008-X
  18. Segal, L., J. J. Creely, and A. E. Martin. 1959. Conrad C. M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29: 786-794. https://doi.org/10.1177/004051755902901003
  19. Sirkka, M., L. Tiina, K. Seppo, H. Bo, and S. Jorma. 2000. $^{13}C$ CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7: 147-159. https://doi.org/10.1023/A:1009200609482
  20. Thygesen, A., J. Oddershede, and H. Lilholt. 2005. On the determination of crystallinity and cellulose content in plant fibers, Cellulose 12: 563-567. https://doi.org/10.1007/s10570-005-9001-8

Cited by

  1. Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning vol.42, pp.2, 2014, https://doi.org/10.5658/WOOD.2014.42.2.119
  2. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties vol.22, pp.3, 2015, https://doi.org/10.1007/s10570-015-0624-0