DOI QR코드

DOI QR Code

Effect of Annealing Temperature on the Anode Properties of TiO2 Nanotubes for Rechargeable Lithium Batteries

열처리 온도에 따른 TiO2 나노튜브의 리튬이차전지 음전극 특성

  • Choi, Min Gyu (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kang, Kun Young (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
  • 최민규 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 강근영 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 김광만 (한국전자통신연구원 융합부품소재부문 전력제어소자팀)
  • Received : 2011.05.24
  • Accepted : 2011.06.20
  • Published : 2012.02.01

Abstract

$TiO_2$ nanotubes are prepared from rutile prticles via an alkaline hydrothermal synthesis and the consequent heat treatment at $300{\sim}500^{\circ}C$. The physical and electrochemical properties of the $TiO_2$ nanotubes are characterized for use as a anode material of rechargeable lithium battery. In particular, the microscale dusts as an impurity component occurred in the purification step after the hydrothermal reaction are completely removed to yield $TiO_2$ nanotube with a higher specific surface area and more obvious crystalline phases. As the annealing temperature increases, the specific surface area is slightly decreased due to some aggregation between the isotropically dispersed nanotubes. Highest initial discharge capacity of 250 mAh $g^{-1}$ is achieved for the $TiO_2$ nanotube annealed at $300^{\circ}C$, whereas the $400^{\circ}C$ $TiO_2$ nanotube shows the superior cycle performance and high-rate capability.

루타일(rutile) $TiO_2$ 분말의 알칼리 수열합성과 $300{\sim}500^{\circ}C$ 열처리를 통해 $TiO_2$ 나노튜브를 제조하고, 이를 리튬이 차전지의 음극 활물질로 채택하여 그 물성과 전기화학적 특성을 조사하였다. 수열반응 직후의 정제과정에서 불순물인 미세분진을 완전히 제거하여 제조된 $TiO_2$ 나노튜브는 고비표면적과 확연한 나노튜브 결정상을 보였다. 또한 열처리 온도가 증가함에 따라 등방적으로 분산된 나노튜브들이 서로 응집되어 비표면적의 감소를 초래하였다. $300^{\circ}C$ 열처리한 $TiO_2$ 나노튜브가 250 mAh $g^{-1}$의 가장 높은 초기 방전용량을 나타내었으며, 사이클과 고율 특성은 $400^{\circ}C$ 열처리한 시료가 가장 우수한 성능을 보였다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Bavykin, D. V., Friedrich J. M. and Walsh, F. C., "Protonated Titanates and $TiO_2$ Nanostructured Materials: Synthesis, Properties, and Applications," Adv. Mater., 18(21), 2807-2824(2006). https://doi.org/10.1002/adma.200502696
  2. Gao, X. P., Lan, Y., Zhu, H. Y., Liu, J. W., Ge, Y. P., Wu, F. and Song, D. Y., "Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes," Electrochem. Solid-State Lett., 8(1), A26-A29(2005). https://doi.org/10.1149/1.1833632
  3. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "$TiO_2$-B Nanowires," Angew. Chem. Int. Ed., 43(17), 2286-2288 (2004). https://doi.org/10.1002/anie.200353571
  4. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "Nanotubes with the $TiO_2$-B Structure," Chem. Commun., (19), 2454-2456(2005).
  5. Choi, M. G., Lee, Y.-G., Song, S.-W. and Kim, K. M., "Lithiumion Battery Anode Properties of $TiO_2$ Nanotubes Prepared by the Hydrothermal Synthesis of Mixed (Anatase and Rutile) Particles," Electrochim. Acta, 55(20), 5975-5983(2010). https://doi.org/10.1016/j.electacta.2010.05.052
  6. Choi, M. G., Lee, Y.-G. and Kim, K. M., "Anode Properties of $TiO_2$ Nanotube for Lithium-ion Batteries," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(3), 283-291(2010).
  7. Li, J., Tang, Z. and Zhang, Z., "Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes," Electrochem. Solid-State Lett., 8(6), A316-A319(2005). https://doi.org/10.1149/1.1904465
  8. Xu, J., Jia, C., Cao, B. and Zhang, F., "Electrochemical Properties of Anatase $TiO_2$ Nanotubes as an Anode Material for Lithiumion Batteries," Electrochim. Acta, 52(28), 8044-8047(2007). https://doi.org/10.1016/j.electacta.2007.06.077
  9. Zhou, Y., Cao, L., Zhang, F., He, B. and Li, H., "Lithium Insertion into $TiO_2$ Nanotube Prepared by the Hydrothermal Process," J. Electrochem. Soc., 150(9), A1246-A1249(2003). https://doi.org/10.1149/1.1597883
  10. Kim, J. and Cho, J., "Rate Characteristics of Anatase $TiO_2$ Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature," J. Electrochem. Soc., 154(6), A542-A546(2007). https://doi.org/10.1149/1.2724756
  11. Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P. and Zhu, H. Y., "Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods," J. Phys. Chem. C, 111(16), 6143-6148 (2007). https://doi.org/10.1021/jp0702595
  12. Wang, Q., Wen, Z. and Li, J., "Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional $TiO_2$ Nanoparticles," Inorg. Chem., 45(17), 6944-6949(2006). https://doi.org/10.1021/ic060477x
  13. Wang, Y., Wu, M. and Zhang, W.F., "Preparation and Electrochemical Characterization of $TiO_2$ Nanowires as an Electrode Material for Lithium-ion Batteries," Electrochim. Acta, 53(27), 7863-7868(2008). https://doi.org/10.1016/j.electacta.2008.05.068
  14. Nakahira, A., Kato, W., Tamai, M., Isshiki, T., Nishio, K. and Aritani, H., "Synthesis of Nanotube from a Layered $H_2Ti_4O_9H_2O$ in a Hydrothermal Treatment Using Various Titania Sources," J. Mater. Sci., 39(13), 4239-4245(2004). https://doi.org/10.1023/B:JMSC.0000033405.73881.7c
  15. Bavykin, D. V., Parmon, V. N., Lapkin, A. A. and Walsh, F. C., "The Effect of Hydrothermal Condition on the Mesoporous Structure of $TiO_2$ Nanotubes," J. Mater. Chem., 14(22), 3370-3377 (2004). https://doi.org/10.1039/b406378c
  16. Wagemaker, M., van Well, A. A., Kearsly, G. J. and Mulder, F. M., "The Life and Times of Lithium in Anatase $TiO_2$," Solid State Ionics, 175(1-4), 191-193(2004). https://doi.org/10.1016/j.ssi.2003.11.030
  17. Furukawa, H., Hibino, M. and Honma, I., "Electrochemical Properties of Nanostructured Amorphous, Sol-Gel Synthesized $TiO_2$/ Acetylene Black Composite Electrodes," J. Electrochem. Soc., 151(4), A527-A531(2004). https://doi.org/10.1149/1.1649747
  18. Gao, X., Zhu, H., Pan, G., Ye, S., Lan, Y., Wu, F. and Song, D., "Preparation and Electrochemical Characterization of Anatase Nanorods for Lithium-Inserting Electrode Material," J. Phys. Chem. B, 108(9), 2868-2972(2004). https://doi.org/10.1021/jp036821i
  19. Sudant, G., Baudrin, E., Larcher, D. and Tarascon, J.-M., "Electrochemical Lithium Reactivity with Nanotextured Anatase-Type $TiO_2$," J. Mater. Chem., 15(15), 1263-1269(2005).
  20. Guo, Y.-G., Hu, Y.-S. and Maier, J., "Synthesis of Hierarchically Mesoporous Anatase Spheres and Their Application in Lithium Batteries," Chem. Commun., (26), 2783-2785(2006).
  21. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L. V., Zhang, J., Aksay, I. A. and Liu, J., "Self- Assembled $TiO_2$-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion," ACS Nano, 3(4), 907-914 (2009). https://doi.org/10.1021/nn900150y

Cited by

  1. Electrochemical Characteristics of Porous Modified Silicon Impregnated with Metal as Anode Materials for Lithium Secondary Batteries vol.23, pp.4, 2012, https://doi.org/10.7316/KHNES.2012.23.4.353
  2. Atomic layer deposition of TiO2 from tetrakis-dimethylamido-titanium and ozone vol.29, pp.7, 2012, https://doi.org/10.1007/s11814-012-0072-6