DOI QR코드

DOI QR Code

Strain-free AlGaN/GaN Nanowires for UV Sensor Applications

Strain-free AlGaN/GaN 자외선 센서용 나노선 소자 연구

  • Ahn, Jaehui (Department of Chemical & Biological Engineering, Korea University) ;
  • Kim, Jihyun (Department of Chemical & Biological Engineering, Korea University)
  • 안재희 (고려대학교 화공생명공학과) ;
  • 김지현 (고려대학교 화공생명공학과)
  • Received : 2011.03.29
  • Accepted : 2011.07.09
  • Published : 2012.02.01

Abstract

In our experiments, strain-free nanowires(NWs) were dispersed on to the substrate, followed by e-beam lithography(EBL) to fabricate single nanowire ultraviolet(UV) sensor devices. Focused-ion beam(FIB), micro-Raman spectroscopy and photoluminescence were employed to characterize the structural and optical properties of AlGaN/GaN NWs. Also, I-V characteristics were obtained under both dark condition and UV lamp to demonstrate AlGaN/GaN NW-based UV sensors. The conductance of a single AlGaN/GaN UV sensor was 9.0 ${\mu}S$(under dark condition) and 9.5 ${\mu}S$ (under UV lamp), respectively. The currents were enhanced by excess carriers under UV lamp. Fast saturation and decay time were demonstrated by the cycled processes between UV lamp and dark condition. Therefore, we believe that AlGaN/GaN NWs have a great potential for UV sensor applications.

Strain-free AlGaN/GaN 나노선을 기판에 분산시킨 후 E-beam lithography(EBL)를 이용해 단일 나노선 자외선 센서를 제작하였다. 나노선의 구조적, 광학적 특성을 분석하기 위해 focused ion beam(FIB), photoluminescence, micro-Raman spectroscopy를 이용하여 나노선의 strain 및 형태를 조사하였다. 자외선 센서로서의 특성 여부를 확인하기 위하여 빛을 차단 한 조건과 자외선을 조사하는 조건하에서 current-voltage(I-V) 특성을 측정하였으며 각각 9.0 ${\mu}S$과 9.5 ${\mu}S$의 전기전도도(conductance)를 얻었다. 자외선 조사 조건하에서 excess carrier의 증가로 인해 전기전도도가 약 5%가 향상되었음을 알 수 있었다. 자외선을 반복적으로 조사하는 과정의 실험을 통해 우수한 포화 시간(saturation time)과 감쇠 시간(decay time)을 얻었다. 따라서 AlGaN/GaN 나노선은 자외선 센서로서 많은 가능성을 가지고 있음을 확인하였다.

Keywords

References

  1. Ponece, F. A. and Bour, D. P., "Nitride-based Semiconductors for Blue and Green Light-emitting Devices," Nature, 386, 351-359(1997). https://doi.org/10.1038/386351a0
  2. Watanabe, K., Taniguchi, T. and Kanda, H., "Direct-bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal," Nature Materials 3, 404-409(2004). https://doi.org/10.1038/nmat1134
  3. Horiuchi, N., "Light-emitting Diodes: Natural White Light," Nature Photonics 4, 738-738(2010). https://doi.org/10.1038/nphoton.2010.244
  4. Huang, Y., Duan, X. F., Cui, Y. and Lieber, C. M. "Gallium Nitride Nanowire Nanodevices," Nano Lett., 2, 101-104(2002). https://doi.org/10.1021/nl015667d
  5. Simpkins, B. S., Pehrsson, P. E. and Laracuente, A. R., "Electronic Conduction in GaN Nanowires," Appl. Phys. Lett. 88, 072111(2006). https://doi.org/10.1063/1.2177629
  6. Hersee, S. D., Sun, X. and Wang, X., "The Controlled Growth of GaN Nanowires," Nano Lett., 6, 1808-1811(2006). https://doi.org/10.1021/nl060553t
  7. Gottschalch, V., Wagner, G., Bauer, J., Paetzelt, H. and Shirnow, M., "VLS Growth of GaN Nanowires on Various Substrates," J. Cryst. Growth 310, 5123-5128(2008). https://doi.org/10.1016/j.jcrysgro.2008.08.013
  8. Parish, G., Keller, S., Kozodoy, P., Ibbetson, J. P., Marchand, H., Fini, P. T., Fleischer, S. B., Denbaars, S. P. and Mishra, U. K., "High-performance (Al,Ga)N-based Solar-blind Ultraviolet p-i-n Detectors on Laterally Epitaxially Overgrown GaN," Appl. Phys. Lett., 75, 247-249(1999). https://doi.org/10.1063/1.124337
  9. Waltereit, P., Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M. and Ploog, K. H., "Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-emitting Diodes," Nature 406, 865-868(2000). https://doi.org/10.1038/35022529
  10. Adivarahan, V., Tamulaitis, G., Srinivasan, R., Yang, J., Khan, M. A., Shur, M. S., Gaska, R. and Simin, G., "Indium-silicon Co-doping of High-aluminum-content AlGaN for Solar Blind Photodetectors," Appl. Phys. Lett., 79, 1903-1905(2001). https://doi.org/10.1063/1.1402159
  11. Lee, J. W., Moon, K., J., Ham, M. H. and Myoung, J. M., "Dielectrophoretic Assembly of GaN Nanowires for UV Sensor Applications," Solid State Communications 148, 194-198(2008). https://doi.org/10.1016/j.ssc.2008.08.022
  12. Pau, J. L., Anduaga, J., Rivera, C., Navarro, A., Alava, I., Redondo, M. and Munoz, E., "Optical Sensors Based on III-nitride Photodetectors for Flame Sensing and Combustion Monitoring," Appl. Optics 45, 7498-7503(2006). https://doi.org/10.1364/AO.45.007498
  13. Chin, A. H., Ahn, T. S., Li, H., Vaddiraju, S., Bardeen, C. J., Ning, C.-Z. and Sunkara, M. K., "Photoluminescence of GaN Nanowires of Different Crystallographic Orientations," Nano Lett., 7, 626-631(2007). https://doi.org/10.1021/nl062524o
  14. Weber, W. H., "Raman Scattering in Materials Science," Springer, Berlin(2000).
  15. Li, Y., Xiang, J., Qian, F., Gradeeak, S., Wu, Y., Yan, H., Blom, D. A. and Lieber, C. M., "Dofant-free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors," Nano Lett., 6, 1468-1473(2006). https://doi.org/10.1021/nl060849z
  16. Qian, F., Li, Y., Gradeeak, S., Wang, D., Barrelet, C. J. and Lieber, C. M., "Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics," Nano Lett., 4, 1975-1979(2004). https://doi.org/10.1021/nl0487774
  17. Kisielowski, C., Kruger, J., Ruvimov, S., Suski, T., Ager, J. W., Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D. and Davis, R. F., "Strain-related Phenomena in GaN Thin Films," Phys. Review B, 54, 17745-17753(1996). https://doi.org/10.1103/PhysRevB.54.17745

Cited by

  1. Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD vol.55, pp.1, 2018, https://doi.org/10.4191/kcers.2018.55.1.04