DOI QR코드

DOI QR Code

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica

다시마의 산 가수분해와 에탄올 발효 특성

  • Na, Choon-Ki (Department of Environmental Engineering, Mokpo National University) ;
  • Song, Myoung-Ki (Department of Environmental Engineering, Mokpo National University)
  • 나춘기 (목포대학교 환경공학과) ;
  • 송명기 (목포대학교 환경공학과)
  • Received : 2011.06.03
  • Accepted : 2011.07.06
  • Published : 2012.02.01

Abstract

In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

바이오에탄올 생산을 위한 대체 바이오매스 자원으로 갈조류인 다시마의 활용 가능성을 평가하기 위하여 산 가수분해와 에탄올 발효 특성을 검토하였다. 산 가수분해는 발효 가능한 당류의 생산량을 증가시켜 에탄올 생산량을 크게 증가시켰다. 최대 환원당 생산량은 묽은 황산(1.0 N)을 이용하여 $130^{\circ}C$에서 6시간 가수분해하는 조건에서 다시마 건조무게 기준 135 mg/g이었다. Saccharomyces cerevisiae(ATCC 24858)는 글루코오스, 갈락토오스 및 만노오스와 같은 $C_6$-당을 에탄올로 발효시킬 수 있지만 아라비노오스나 자일로오스와 같은 $C_5$-당은 에탄올 발효기질로 이용하지 못하였다. 최적 발효시간은 글루코오스 48시간, 갈락토오스 72시간, 만노오스 96시간으로 단당류에 따라 달랐다. 그럼에도 불구하고 S. cerevisiae를 이용하여 $35^{\circ}C$에서 96시간 발효를 통해 가수분해물로부터 얻을 수 있는 에탄올 생산량은 가수분해물 중의 총환원당으로부터 얻을 수 있는 이론적 생산량에 비해 4배 정도 높은 다시마 건조무게 기준 242 mg/g에 달하였다. 이는 가수분해물에 용존되어 있는 비환원당과 올리고당류들이 에탄올 발효에서 중요한 역할을 하고 있음을 나타낸다. 가수분해 용액 대비 다시마의 주입비율을 1에서 5%(w/v)로 증가시킴에 따라 에탄올 농도는 2.4에서 9.2 g/L로 증가하는 반면 단위무게당 에탄올 생산량은 242에서 185 mg/g으로 감소하였다. 다시마의 에탄올 생산성은 대략 7,400~9,600 kg/ha/year 정도로 평가되어 다시마가 바이오에탄올 생산을 위한 바이오매스 자원으로 매우 유용함을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Balata, M., Balata, H. and Oz, C., "Progress in Bioethanol Processing," Prog. Energy Combustion Sci., 34, 551-573(2008). https://doi.org/10.1016/j.pecs.2007.11.001
  2. Nigam, P. and Singh, A., "Production of Liquid Biofuels from Renewable Resources," Prog. Energy Combust. Sci., 37, 52-58 (2011). https://doi.org/10.1016/j.pecs.2010.01.003
  3. Sims, R. E. H., Mabee, W., Saddler, J. N. and Taylor, M., "An Overview of Second Generation Biofuel Technologies," Bioresour. Technol., 101, 1570-1580(2011).
  4. Delgenes, J. P., Moletta, R. and Navarro, J. M., "Acid-hydrolysis of Wheat Straw and Process Considerations for Ethanol Fermentation by Pichia Stipitis Y7124," Process Biochem., 25, 132-135(1990).
  5. Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A. B. and Schmidt, A. S., "Pretreatment of Wheat Straw and Conversion of Xylose and Xylan to Ethanol by Thermophilic Anaerobic Bacteria," Bioresour. Technol., 58, 107-113(1996). https://doi.org/10.1016/S0960-8524(96)00090-9
  6. Nigam, J. N., "Ethanol Production from Wheat Straw Hemicellulose Hydrolysate by Pichia Stipitis," J. Biotechnol., 87, 17-27(2001). https://doi.org/10.1016/S0168-1656(00)00385-0
  7. Saha, B. C., Iten, L. B., Cotta, M. A. and Wu, Y. V., "Dilute Acid Pretreatment, Enzymatic Saccharification and Fermentation of Wheat Straw to Ethanol," Process Biochem., 40, 3693-3700(2005). https://doi.org/10.1016/j.procbio.2005.04.006
  8. John, R. P., Anisha, G. S., Nampoothiri, K. M. and Pandey, A., "Micro and Macroalgal Biomass: a Renewable Source for Bioethanol," Bioresour. Technol., 102, 186-193(2011). https://doi.org/10.1016/j.biortech.2010.06.139
  9. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M. and Seibert, M., "Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances," Plant J., 54, 621-639(2008). https://doi.org/10.1111/j.1365-313X.2008.03492.x
  10. Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E. and Chen, Y., "Harvesting Algal Biomass for Biofuels Using Ultrafiltration Membranes," Bioresour. Technol., 101, 5297-5304(2010). https://doi.org/10.1016/j.biortech.2010.02.007
  11. Singh, A., Nigam, P. S. and Murphy, J. D., "Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels," Bioresour. Technol., 102, 10-16(2011). https://doi.org/10.1016/j.biortech.2010.06.032
  12. Goh, C. S. and Lee, K. T., "Conceptual Macroalgae-based Thirdgeneration Bioethanol (TGB. Biorefinery in Sabah, Malaysia as an Underlay for Renewable and Sustainable Development," Renew. Sustain. Energy Rev., 14, 842-848(2010). https://doi.org/10.1016/j.rser.2009.10.001
  13. Guerriero, G., Fugelstad, J. and Bulone, V., "What do we Really Know about Cellulose Biosynthesis in Higher Plant?," J. Integr. Plant Biol., 52, 161-175(2010). https://doi.org/10.1111/j.1744-7909.2010.00935.x
  14. Okuda, K., Oka, K., Onda, A., Kajiyoshi, K., Hiraoka, M. and Yanagisawa, K., "Hydrothermal Fractional Pretreatment of Sea Algae and Its Enhanced Enzymatic Hydrolysis," J. Chem. Technol. Biot., 83, 836-841(2008). https://doi.org/10.1002/jctb.1877
  15. Aresta, M., Dibenedetto, A. and Barbeiro, G., "Utilization of Macroalgae for Enhanced $CO_2$ Fixation and Biofuels Production: Development of a Computing Software for an LCA Study," Fuel. Process. Technol., 86, 1679-1693(2005). https://doi.org/10.1016/j.fuproc.2005.01.016
  16. Horn, S. J., Aasen, I. M. and Ostgaard, K., "Production of Ethanol from Mannitol by Zymobacter Palmae," J. Ind. Microbiol. Biotechnol., 24, 51-57(2000). https://doi.org/10.1038/sj.jim.2900771
  17. Lee, S.M. and Lee, J.H., "Influence of Acid and Salt Content on the Ethanol Production from Laminaria japonica," Appl. Chem. Eng., 21, 154-161(2010).
  18. Wang, X., Liu, X. and Wang, G., "Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation," J. Integrative Plant Biology, 53(3), 246-252(2011). https://doi.org/10.1111/j.1744-7909.2010.01024.x
  19. Miller, G. L., "Use of Dinitrosalicylic Acid Reagent for the Determination of Reducing Sugars," Anal. Chem., 31, 426-428(1959). https://doi.org/10.1021/ac60147a030
  20. Cadoche, L. and Lopez, G. D., "Assessment of Size Reduction as a Preliminary Step in the Production of Ethanol from Lignocellulosic Wastes," Biol. Wastes, 30, 153-157(2009).
  21. Chen, M., Zhao, J. and Xia, L., "Comparison of Four Different Chemical Pretreatments of Corn Stover for Enhancing Enzymatic Digestibility," Biomass Bioenergy, 33, 1381-1385(2009). https://doi.org/10.1016/j.biombioe.2009.05.025
  22. Van Groenestijn, J., Hazewinkel, O. and Bakker, R., "Pretreatment of Lignocellulose with Biological Acid Recycling (Biosulfurol process)," Zuckerindustrie, 131, 639-641(2006).
  23. Dawson, L. and Boopathy, R., "Cellulosic Ethanol Production from Sugarcane Bagasse without Enzymatic Saccharification," Bio. Resour., 3, 452-460(2008).
  24. Abedinifar, S., Karimi, K., Khanahmadi, M. and Taherzadeh M. J., "Ethanol Production by Mucor Indicus and Rhizopus Oryzae from Rice Straw by Separate Hydrolysis and Fermentation," Biomass Bioenergy, 33, 828-833(2009). https://doi.org/10.1016/j.biombioe.2009.01.003
  25. Rabelo, S. C., Filho, R. M. and Costa, A. C., "Lime Pretreatment of Sugarcane Bagasse for Ethanol Production," Appl. Biochem. Biotechnol., 153, 139-150(2009). https://doi.org/10.1007/s12010-008-8433-7
  26. Harun, R. and Danquah, M. K., "Influence of Acid Pre-treatment on Microalgal Biomass for Bioethanol Production," Process Biochem., 46, 304-309(2011). https://doi.org/10.1016/j.procbio.2010.08.027
  27. Jeffries, T. W. and Jin, Y. S., "Ethanol and Thermotolerance in the Bioconversion of Xylose by Yeasts," Adv. Appl. Microbiol., 47, 221-268(2000). https://doi.org/10.1016/S0065-2164(00)47006-1
  28. Torget, R., Hatzis, C., Hayward, T. K., Hsu, T. A. and Philippidis, G.P., "Optimization of Reverse-flow, 2-temperature, Diluteacid Pretreatment to Enhance Biomass Conversion to Ethanol," Appl. Biochem. Biotechnol., 58, 85-101(1996).
  29. Ryu, J. G., Cho, J. H. and Kim, D. Y., Strategy and Policy Direction for Bio-industrialization of Marine Algae," Korea Maritime Institute, Policy Study Data (2009).
  30. Ge, L., Wang, P. and Mou, H., "Study on Saccharification Techniques of Seaweed Wastes for the Transformation of Ethanol," Renewable Energy, 36, 84-89(2011). https://doi.org/10.1016/j.renene.2010.06.001
  31. Kloareg, B. and Quatrano, R. S., "Structure of the Cell Walls of Marine Algae and Ecophysical Functions of the Matrix Polysaccharides," Oceanogr. Mar. Biol. Ann. Rev., 26, 259-315(1998).
  32. Percival, E., "The Polysaccharides of Green, Red and Brown Seaweeds: Their Basic Structure, Biosynthesis and Function," British Phycological Journal, 14, 103-117(1979). https://doi.org/10.1080/00071617900650121
  33. Park, J. I., Woo, H. C. and Lee, J. H., "Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46, 833-844(2008).
  34. Kim, G. S., "Study on Suitability of Bio-energy Production using Marine Algae," GOVP1200819997, Ministry of Knowledge Economy( 2007).
  35. Delgenes, J. P., Moletta, R. and Navarro, J. M., "Acid-hydrolysis of Wheat Straw and Process Considerations for Ethanol Fermentation by Pichia Stipitis Y7124," Process Biochemistry, 25, 132-135(1990).
  36. Polycarpou, P., "Bioethanol Production from Asphodelus Aestivus," Renewable Energy, 34, 2525-2527(2009). https://doi.org/10.1016/j.renene.2009.04.015
  37. Linoj Kumar, N. V., Dhavala, P., Goswami, A. and Maithel, S., "Liquid Biofuels in South Asia: Resources and Technologies," Asian Biotechnol. Develop. Rev., 8, 31-49(2006).
  38. Demirbas, A., "Bioethanol from Cellulosic Materials: a Renewable Motor Fuel from Biomass," Energy Sources, 27, 327-337(2005). https://doi.org/10.1080/00908310390266643
  39. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H. and Posten, C., "Second Generation Biofuels: High-efficiency Microalgae for Biodiesel Production," Bioenergy Res., 1, 20-43(2008). https://doi.org/10.1007/s12155-008-9008-8

Cited by

  1. 마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교 vol.9, pp.2, 2013, https://doi.org/10.7849/ksnre.2013.9.2.005
  2. 기장과 완도해역에서의 수층별 다시마 (Saccharina japonica Areschoug) 생산성 vol.8, pp.2, 2012, https://doi.org/10.15433/ksmb.2016.8.2.054