DOI QR코드

DOI QR Code

Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet

고에너지밀도 펠릿제조를 위한 목재칩 반탄화 특성

  • Lee, Jae-Won (Department of Forest Products and Technology (BK21 Program), College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Young-Hun (Department of Forest Products and Technology (BK21 Program), College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Soo-Min (Division of Bioenergy, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Lee, Hyoung-Woo (Department of Forest Products and Technology (BK21 Program), College of Agriculture & Life Sciences, Chonnam National University)
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 김영훈 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이수민 (국립산림과학원 녹색자원이용부 바이오에너지연구과) ;
  • 이형우 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2011.08.30
  • Accepted : 2011.10.27
  • Published : 2012.04.01

Abstract

In this study, torrefaction of mixed softwood chips under anoxic condition was performed to improve energy density and maintain consistent quality of biomass. Characteristics of torrefied biomass depending on reaction time (30 min) and temperature (240, 260,$280^{\circ}C$) were investigated. Torrefaction of mixed softwood chips significantly improved the heating value compared to that of untreated biomass. As the torrefaction temperature was increased, the carbon content of torrefied biomass increased from 46.55 to 55.73%, while its hydrogen and oxygen contents decreased from 6.00 to 5.87% and from 30.55 to 27.21%, respectively. Most of hemicelluloses and volatile compounds were removed during torrefaction. The highest heating value was 5132 kcal/kg when torrefaction was performed at$280^{\circ}C$ for 30 min. It implied that the heating value increased by 13% compared to that of original biomass. However, the condition of effective torrefaction was at $240^{\circ}C$ for 30 min when weight loss and energy yield was considered.

본 연구에서는 소나무 혼합수종을 이용하여 에너지 밀도 증가, 균일한 품질의 바이오매스 제공을 위해 무산소 조건에서 반탄화를 실시하였다. 반응온도는 240, 260,$280^{\circ}C$로 하여 30분 동안 반응시킨 후 반탄화 바이오매스 특성을 조사하였다. 침엽수혼합수종의 반탄화는 무처리 바이오매스와 비교하여 발열량이 향상되었음을 확인하였다. 반탄화 온도가 증가할수록 반탄화된 바이오매스의 탄소함량은 최대 46.55%에서 55.73%로 증가하였다. 반면 수소와 산소의 함량은 각각 6.00%에서 5.87%, 30.55%에서 27.21%로 감소하였다. 반탄화 과정에서 주로 헤미셀룰로오스와 휘발성 물질이 제거되었다.$280^{\circ}C$에서 30분 동안 반응하였을 때 최대 발열량 5,132 kcal/kg을 나타냈다. 이것은 처리전 바이오매스의 발열량 보다 약 13% 증가하였음을 나타내고 있다. 중량감소율과 에너지수율을 고려하여 비교한 결과 $240^{\circ}C$에서 30분 동안 처리하였을 때 효과적인 반탄화가 이루어졌다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Obernberger, I. and Thek, G., "The Pellet Handbook: The Production and Thermal Utilization of Biomass Pellets," IEA Bioenergy(2010).
  2. Mani, S., Tabil, L. G. and Sokhansanj, S., "Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets," Biomass Bioenerg., 30(7), 648-654(2006). https://doi.org/10.1016/j.biombioe.2005.01.004
  3. Sokhansanj, S., Mani, S., Turhollow, A. F. and Kumar, A. "Large Scale Production, Collection and Supply of Switchgrass(Panicum virgatum L.)-Visioning a Mature Technology," Biofuels, Bioproducts and Biorefining, 3, 124-141(2009). https://doi.org/10.1002/bbb.129
  4. Chen, W. and Kuo, P., "Torrefaction and Co-torrefaction Characterization of Hemicelluloses, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass," Energy, 36, 803-811(2011). https://doi.org/10.1016/j.energy.2010.12.036
  5. Repellin, V., Govin, A., Rolland, M. and Guyonnet, R., "Modelling Anhydrous Weight Loss of Wood Chips During Torrefaction in a Pilot Kiln," Biomass Bioenerg., 34, 602-609(2010). https://doi.org/10.1016/j.biombioe.2010.01.002
  6. Korea Forest Service, 2009. The quality standard of wood pellet. No. 2009-2.
  7. Mani, S., "Integrating Biomass Torrefaction with Thermo-chemical Conversion Processes," In: Proceedings of The 2009 AIChE Annual Meeting Nashville, TN(2009).
  8. Chen, W. and Kuo, P., "A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry," Energy, 35, 2580-2586(2010). https://doi.org/10.1016/j.energy.2010.02.054
  9. Bergman, P. C. A., Boersma, A. R., Zwart, R. W. R. and Kiel, J. H. A., "Torrefaction for Biomass Co-firing in Existing Coal-fired Power Stations," ENC-C-05-013 The Netherlands, Energy Research Center of the Netherlands(2005).
  10. Milosavljevic, I. and Suuberg, E. M., "Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics," Ind. Eng. Chem. Res., 34(4), 1081-1091(1995). https://doi.org/10.1021/ie00043a009
  11. Sadaka, S. and Negi, S. "Improvements of Biomass Physical and Thermochemical Characteristics Via Torrefaction Process," Environmental Progress & Sustainable Energy, 28, 427-434(2009). https://doi.org/10.1002/ep.10392
  12. Felfri, F. F., Luengo, C. A., Suarez, J. A. and Beaton, P. A. "Wood Briquette Torrefaction," Energy for Sustainable Development, 9, 19-22(2005). https://doi.org/10.1016/S0973-0826(08)60519-0
  13. Shafizadeh, F., Sarkanen, K. V. and Tillman, D. A., "Thermal Uses and Properties of Carbohydrates and Lignins," Academic Press, Am. Chem. Soc., New York(1976).
  14. Lehtikangas, P., "Quality Properties of Pelletised Sawdust, Logging Residues and Bark," Biomass Bioenerg., 20(5), 351-360(2001). https://doi.org/10.1016/S0961-9534(00)00092-1
  15. Prins, M. J., Ptasinski, K. J. and Janssen, F. J. J. G., "More Efficient Biomass Gasfication Via Torrefaction," Energy, 31, 3458-3470(2006). https://doi.org/10.1016/j.energy.2006.03.008

Cited by

  1. Characteristics of Torrefaction with Water Hyacinth vol.38, pp.3, 2013, https://doi.org/10.5307/JBE.2013.38.3.180
  2. The Fuelization Study on the Oil Palm Frond Through Torrefaction vol.51, pp.4, 2013, https://doi.org/10.9713/kcer.2013.51.4.465
  3. Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi) vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.739
  4. Fuel Properities of Spent Coffee Bean by Torrefaction vol.9, pp.3, 2013, https://doi.org/10.7849/ksnre.2013.9.3.029
  5. Study on Torrefaction Characteristics of Baggase vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.672
  6. The Characterization of Woodchip Torrefaction and Byproduct Gas vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.055
  7. Production of High-density Solid Fuel Using Torrefeid Biomass of Larch Wood vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.381
  8. Microscopic Observation of Pellets Fabricated with Torrefied Larch and Tulip Tree Chips and Effect of Binders on the Durability of the Pellets vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.224
  9. Upgrading of the Hydrophobicity of Larix kaempferi and Liriodendron tulipifera via Torrefaction vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.070
  10. Thermal Degradation Behavior of Biomass Depending on Torrefaction Temperatures and Heating Rates vol.44, pp.5, 2016, https://doi.org/10.5658/WOOD.2016.44.5.685
  11. Simulation & Model Validation of Torrefaction Process and Analysis of the Fuel Properties for Pepper Stem vol.13, pp.4, 2017, https://doi.org/10.7849/ksnre.2017.12.13.4.064
  12. 바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.725