DOI QR코드

DOI QR Code

Changes in the Physiological Activities of Four Sweet Potato Varieties by Cooking Condition

고구마 네 가지 품종의 조리방법에 따른 생리활성 변화

  • Lee, Young-Min (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Bae, Ji-Hyun (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Kim, Jung-Bong (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Kim, So-Young (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Chung, Mi-Nam (Bioenergy Crop Research Center, Rural Development Administration) ;
  • Park, Mi-Young (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Ko, Jeong-Sook (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Song, Jin (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Kim, Jae-Hyun (Functional Food & Nutrition Division, Rural Development Administration)
  • 이영민 (농촌진흥청 기능성식품과) ;
  • 배지현 (농촌진흥청 기능성식품과) ;
  • 김정봉 (농촌진흥청 기능성식품과) ;
  • 김소영 (농촌진흥청 기능성식품과) ;
  • 정미남 (농촌진흥청 바이오에너지작물센터) ;
  • 박미영 (농촌진흥청 기능성식품과) ;
  • 고정숙 (농촌진흥청 기능성식품과) ;
  • 송진 (농촌진흥청 기능성식품과) ;
  • 김재현 (농촌진흥청 기능성식품과)
  • Received : 2011.10.31
  • Accepted : 2012.01.09
  • Published : 2012.02.29

Abstract

The present study was performed to investigate antioxidant, anticancer, and antimicrobial activities of four Korean sweet potato variaties and to identify the changes in these biological activities under different cooking conditions. Total polyphenol content was 3.8-73.6 mg/g in 80% ethanol extracts of sweet potatoes. The polyphenol content was highest Sinjami variety (p < 0.05). Radical scavenging activity against DPPH and $ABTS^{{\cdot}+}$ was high in Sinjami (p < 0.05) and the ethanol extract from Sinjami also showed effective superoxide dismutase (SOD)-like activity, which decreased significantly by steaming and roasting (p < 0.05). Ethanol extracts from the four sweet potato variaties did not inhibit cancer cell growth in MCF-7 or HepG2 cells at concentrations of 1, 10, and $100\;{\mu}g$/mL. Of the investigated sweet potato variaties, only Sinjami exhibited strong antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. The antimicrobial activity of Sinjami against E. coli, St. aureus, and S. typhimurium decreased following steaming and roasting (p < 0.05). These results indicate that the Sinjami Korean sweet potato had higher polyphenol content, radical scavenging activity, SOD-like activity, and antimicrobial activity than those of the other variaties and consuming raw Sinjami might be beneficial for maintenance of biological activities.

최근에 고구마는 영양성 뿐만 아니라 기능성을 함께 갖춘 건강기능식품으로 새롭게 관심 받고 있으나, 고구마의 기능성이 일반적으로 사용되는 찌기, 굽기 등의 조리방법에 의하여 어떻게 변화하는지에 대한 연구가 없다. 따라서 본 연구에서는 일반고구마인 연황미와 진홍미, 유색고구마인 주황미와 신자미 네 가지 품종에 대하여 항산화활성과 항암활성, 항균활성을 평가하고 찌기와 굽기에 의한 생리활성의 변화를 조사하였다. 총 폴리페놀 함량은 신자미 생 것이 73.6 mg/g으로 가장 높았고, 연황미 (3.8 mg/g)와 진홍미 (7.4 mg/g), 그리고 주황미 (7.9 mg/g)보다 높은 함량을 보였다. 조리유형별로는 신자미의 폴리페놀 함량이 생 것에서 가장 높았고, 그다음 찐 것 (41.0 mg/g)과 구운 것 (38.6 mg/g) 순으로 감소하여 굽기와 찌기 등의 조리에 의한 폴리페놀 함량의 감소를 보였다. 신자미는 DPPH 라디칼와 ABTS 양이온 소거능에서도 우수한 활성을 보였으며 신자미의 경우 라디칼 소거능이 찌기와 굽기에 의해서 감소하였으나, 이에 반해, 진홍미와 주황미는 찌기에 의해서 항산화능이 증가하는 것으로 나타났다. 다른 품종과는 달리, 신자미는 SOD 유사활성이 82.5%로 높은 항산화성을 보였으나, 찐 것의 경우 55.4%, 구운 것이 45.1%로 SOD 유사활성이 생 것에 비해 감소하였다. 고구마 에탄올 추출물을 유방암 세포인 MCF-7과 간암 세포인 HepG2에 처리하였을 때 세포의 성장을 저해하지 못하였고, 품종간에 또는 조리방법간에 유의적 차이를 보이지 않았다. 항균 활성도 측정에서 E. coli, St. aureus, S. typhimurium 3가지 미생물에 대해 연황미, 진홍미, 주황미는 항균활성을 보이지 않았으나, 신자미는 생육을 각각 44%, 35%, 55% 저해시켰으며 찌기와 굽기에 의해서 항균 활성이 11~24% 수준으로 감소하였다. 결론적으로, 주황색고구마인 주황미나 일반고구마 연황미, 진홍미에 비해서 진한 자색을 띄는 자색고구마 신자미는 항산화능과 항균능이 우수하였고, 이러한 신자미의 생리활성은 찌기에 의한 습열처리, 굽기에 의한 건열처리에 의해서 감소하였기에, 신자미의 생리활성을 유지하기 위해서는 생 것을 우유와 섞어 마시거나 샐러드로 활용하는 것이 바람직할 것으로 판단되었다.

Keywords

References

  1. 2010 agricultural area statistics. Daejeon: Statistics Korea; 2011
  2. National Rural Resources Development Institute. Food composition table, 7th revision. Suwon: Rural Development Administration; 2005
  3. National Academy of Agricultural Science. Tables of food functional composition, 1st edition. Suwon: Rural Development Administration; 2009
  4. AhnYO, Kim SH, Lee HS, Lee JS, Ma D, Kwak SS. Contents of low molecular weight antioxidants in the leaves of different sweetpotato cultivars at harvest. Korean J Plant Biotechnol 2009; 36: 214-218 https://doi.org/10.5010/JPB.2009.36.3.214
  5. Lee HH, Kang SG, Rhim JW. Characteristics of antioxidative and antimicrobial activities of various cultivars of sweet potato. Korean J Food Sci Technol 1999; 31(4): 1090-1095
  6. Song J, Chung MN, Kim JT, Chi HY, Son JR. Quality characteristics and antioxidative activities in various cultivars of sweet potato. Korean J Crop Sci 2005; 50(Suppl): 141-146
  7. Kwak JH, Choi GN, Park JH, Kim JH, Jeong HR, Jeong CH, Heo HJ. Antioxidant and neuronal cell protective effect of purple sweet potato extract. J Agric Life Sci 2010; 44(2): 57-66
  8. Huang YC, Chang YH, Shao YY. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem 2006; 98(3): 529-538 https://doi.org/10.1016/j.foodchem.2005.05.083
  9. Park JS, Bae JO, Choi GH, Chung BW, Choi DS. Antimutagenicity of Korean sweet potato (Ipomoea batatas L.) cultivars. J Korean Soc Food Sci Nutr 2011; 40(1): 37-46 https://doi.org/10.3746/jkfn.2011.40.1.037
  10. Goda Y, Shimizu T, Kato Y, Nakamura M, Maitani T, Yamada T, Terahara N, Yamaguchi M. Two acylated anthocyanins from purple sweet potato. Phytochemistry 1997; 44(1): 183-186 https://doi.org/10.1016/S0031-9422(96)00533-X
  11. Lee LS, Kim SJ, Rhim JW. Analysis of anthocyanin pigments from purple-fleshed sweet potato (Jami). J Korean Soc Food Sci Nutr 2000; 29(4): 555-560
  12. Lee GH, Kwon BK, Yim SY, Oh MJ. Phenolic compounds in sweet potatoes and their antioxidative activity. Korean J Postharvest Sci Technol 2000; 7(3): 331-336
  13. Lee JS, Ahn YS, Kim HS, Chung MN, Boo HO. Proximate composition and minerals, phenolic, anthocyanins pigment characteristics in the parts of sweetpotato. J Korean Soc Int Agric 2007; 19(3): 196-204
  14. Lee JS, Park YK, Ahn YS, Kim HS, Chung MN, Jeong BC, Bang JK. Antioxidative and biological activities of extracts of sweetpotato tips. Korean J Crop Sci 2007; 52(4): 411-420
  15. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 1912; 12(2): 239-243
  16. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181(4617): 1198-1200
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26(9-10): 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  18. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47(3): 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  19. Han DS, Kim SJ. SOD-like compounds and development of functional food. Bull Food Technol 1994; 7(4): 41-49
  20. Shen MC, Sterling C. Changes in starch and other carbohydrates in baking Ipomoea batatas. Starch 1981; 33(8): 261-268 https://doi.org/10.1002/star.19810330803
  21. Suh HJ, Chung SH, Choi YM, Bae SH, Kim YS. Changes in sugar content of sweet potato by different cooking methods. Korean J Soc Food Sci 1998; 14(2): 182-187
  22. Kim SM, Jung YJ, Pan CH, Um BH. Antioxidant activity of methanol extracts from the genus Lespedeza. J Korean Soc Food Sci Nutr 2010; 39(5): 769-775 https://doi.org/10.3746/jkfn.2010.39.5.769
  23. Ku KM, Kim SK, Kang YH. Antioxidant activity and functional components of corn silk (Zea mays L.). Korean J Plant Resour 2009; 22(4): 323-329
  24. Lee YM, Bae JH, Jung HY, Kim JH, Park DS. Antioxidant activity in water and methanol extracts from Korean edible wild plants. J Korean Soc Food Sci Nutr 2011; 40(1): 29-36 https://doi.org/10.3746/jkfn.2011.40.1.029
  25. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 2004; 36(2): 333-338
  26. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS, Kim JH, Park HJ, Lee DJ. Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 2012; 130(4): 966-972 https://doi.org/10.1016/j.foodchem.2011.08.031
  27. Akond A.S., Khandaker L, Berthold J, Gates L, Peters K, Delong H, Hossain K. Anthocyanin, total polyphenols and antioxidant activity of common bean. Am J Food Technol 2011; 6(5): 385-394 https://doi.org/10.3923/ajft.2011.385.394
  28. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 2002; 50(10): 3010-3014 https://doi.org/10.1021/jf0115589
  29. Korean Society of Food Science and Technology. Quality characteristics for processing of sweet potatoes with different cultivars (P06-015). Proceedings of the 77th annual meeting of Korean Society of Food Science and Technology; 2010 Jun 16-18. Incheon, Korea
  30. Wahle KW, Brown I, Rotondo D, Heys SD. Plant phenolics in the prevention and treatment of cancer. Adv Exp Med Biol 2011; 698: 36-51
  31. Mates JM, Segura JA, Alonso FJ, Marquez J. Anticancer antioxidant regulatory functions of phytochemicals. Curr Med Chem 2011; 18(15): 2315-2338 https://doi.org/10.2174/092986711795656036
  32. Shu L, Cheung KL, Khor TO, Chen C, Kong AN. Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 2010; 29(3): 483-502 https://doi.org/10.1007/s10555-010-9239-y
  33. Park KY, Lee KI, Rhee SH. Inhibitory effect of green-yellow vegetables on the mutagenicity in Salmonella assay system and on the growth of AZ-521 human gastric cancer cells. J Korean Soc Food Nutr 1992; 21(2): 149-153
  34. Kim HJ, Kim MK. Anticancer effect of persimmon leaf extracts on Korean gastric cancer cell. Korean J Nutr 2003; 36(2): 133-146
  35. Min KJ, Song JW, Cha CG. The antioxidative and antitumor activity of extracts of Agrimonia pilosa. J Food Hyg Saf 2008; 23(2): 149-156
  36. Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. Forthcoming 2011
  37. Cisowska A, Wojnicz D, Hendrich AB. Anthocyanins as antimicrobial agents of natural plant origin. Nat Prod Commun 2011; 6(1): 149-156

Cited by

  1. Optimization of Makgeolli Manufacture Using Several Sweet Potatoes vol.26, pp.1, 2013, https://doi.org/10.9799/ksfan.2013.26.1.029
  2. Vitamin C Quantification of Korean Sweet Potatoes by Cultivar and Cooking Method vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.955
  3. Antioxidant Activities of Extracts Prepared from Sweet Potatoes with Different Flesh Colors vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.005
  4. Food Composition of Raw, Boiled, and Roasted Sweet Potatoes vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.59
  5. Ultrasound-assisted osmotic process on quality of microwave vacuum drying sweet potato vol.36, pp.11, 2018, https://doi.org/10.1080/07373937.2017.1402786
  6. 자색 고구마 농축액을 첨가하여 제조한 젤리의 품질특성 및 항산화활성 vol.45, pp.1, 2012, https://doi.org/10.9721/kjfst.2013.45.1.47
  7. 조리 과정 중 시금치의 항산화 활성 및 항균 활성의 변화 vol.27, pp.2, 2012, https://doi.org/10.9799/ksfan.2014.27.2.147
  8. 조리방법에 따른 고사리의 항산화활성 및 항균활성 비교 vol.27, pp.3, 2012, https://doi.org/10.9799/ksfan.2014.27.3.348
  9. 조리 과정 중 시래기의 항산화 활성 및 항균 활성 비교 vol.27, pp.4, 2014, https://doi.org/10.9799/ksfan.2014.27.4.609
  10. 자색고구마 신자미로부터 분리한 안토시아닌 분획물의 항산화 활성과 산화스트레스에 대한 간세포 보호 효과 vol.27, pp.6, 2012, https://doi.org/10.9799/ksfan.2014.27.6.1090
  11. In vitro antioxidant, antimicrobial and anti-proliferative activities of purple potato extracts (Solanum tuberosum cv Vitelotte noire) following simulated gastro-intestinal digestion. vol.29, pp.11, 2015, https://doi.org/10.1080/14786419.2014.981183
  12. 자색고구마로부터 분리한 안토시아닌 분획물의 고지방식이로 유도된 인슐린 저항성과 간 지질 축적 개선 효과 vol.26, pp.3, 2012, https://doi.org/10.17495/easdl.2016.6.26.3.278
  13. 복숭아 품종별 성숙정도에 따른 항산화 및 항염증 효과간의 상관관계 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.638
  14. 국내 유통 건조 농산물 중 고구마 말랭이의 이산화황, 카로티노이드 함량 및 바실러스 세레우스오염 정도 조사 vol.32, pp.6, 2012, https://doi.org/10.13103/jfhs.2017.32.6.477
  15. Development of New Experimental Dentifrice of Peruvian Solanum tuberosum (Tocosh) Fermented by Water Stress: Antibacterial and Cytotoxic Activity vol.20, pp.10, 2012, https://doi.org/10.5005/jp-journals-10024-2681
  16. 다시마 물 추출액과 발효액의 항산화 및 항염증 활성 vol.29, pp.5, 2012, https://doi.org/10.5352/jls.2019.29.5.596
  17. 유산균을 이용한 발효 고구마의 품질 특성 및 항산화 활성 vol.32, pp.5, 2012, https://doi.org/10.9799/ksfan.2019.32.5.494
  18. Selected purple-fleshed sweet potato genotypes with high anthocyanin contents vol.456, pp.None, 2012, https://doi.org/10.1088/1755-1315/456/1/012023
  19. 홍국색소의 항산화 활성 및 조골세포 분화에 미치는 영향 vol.30, pp.5, 2020, https://doi.org/10.5352/jls.2020.30.5.468
  20. 갈변방지제 처리에 따른 슬라이스 유자의 품질 변화 vol.33, pp.4, 2012, https://doi.org/10.9799/ksfan.2020.33.4.419
  21. The Effects of Pretreatment Methods on Quality Characteristic of Hot Air-dried Sweet Potato Slices vol.24, pp.3, 2012, https://doi.org/10.13050/foodengprog.2020.24.3.164
  22. 지렁쿠나무 메탄올 추출물의 생리활성 연구 vol.30, pp.11, 2012, https://doi.org/10.5352/jls.2020.30.11.965
  23. Purple-fleshed sweet potato genotypes as the ingredients for crisps and noodle making vol.306, pp.None, 2012, https://doi.org/10.1051/e3sconf/202130601048
  24. Processing methods affect phytochemical contents in products prepared from orange‐fleshed sweetpotato leaves and roots vol.9, pp.2, 2012, https://doi.org/10.1002/fsn3.2081