DOI QR코드

DOI QR Code

Technologies of Underground Thermal Energy Storage (UTES) and Swedish Case for Hot Water

지하 열에너지 저장 기술 및 스웨덴 암반공동내 열수 저장 사례

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 김형목 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 선우춘 (한국지질자원연구원 지반안전연구부) ;
  • 한공창 (한국지질자원연구원 지반안전연구부)
  • Received : 2012.01.25
  • Accepted : 2012.02.21
  • Published : 2012.02.29

Abstract

Thermal energy storage is defined as the temporary storage of thermal energy at high or low temperatures for later use in need. The energy storage can reduce the time or rate mismatch between energy supply and demand, and thus it plays an important role in conserving energy and improving the efficiency of energy utilization, especially for renewable energy sources which provide energy intermittently. Underground thermal energy storage (UTES) can have additional advantages in energy efficiency thanks to low thermal conductivity and high heat capacity of surrounding rock mass. In this paper, we introduced the technologies of underground thermal energy storage and rock caverns for hot water storage in Sweden.

열에너지 저장은 고온 또는 저온의 열에너지를 임시 저장하는 것으로서 에너지 수요와 공급 사이의 불균형을 줄일 수 있고, 이를 통해 에너지를 절약하고 에너지 이용효율을 향상시킬 수 있다. 특히 간헐적으로 에너지를 생산하는 신재생에너지의 경우 에너지 저장 장치와의 조합은 필수적이다. 또한 지하 암반의 낮은 열전도도와 높은 열용량을 이용하여 지하에 열에너지를 저장하는 경우 열손실을 최소화하여 추가적인 효율 향상이 기대된다. 본 고에서는 지하 열에너지 저장 기술을 조사 분석하고 스웨덴에 암반공동내 열에너지 저장 사례를 소개하였다.

Keywords

References

  1. Bouhdjar A. and A. Harhad, 2002, Numerical analysis of transient mixed convection flow in storage tank: influence of fluid properties and aspect ratios on stratification, Renewable Energy 25, 555-567. https://doi.org/10.1016/S0960-1481(01)00090-8
  2. Cole R. L. and F. O. Bellinger, 1982, Thermally stratified tanks, ASHRAE Transactions 88, 1005-1017.
  3. Cotter M. A. and M. E. Charles, 1993, Transient cooling of petroleum by natural convection in cylindrical storage tanks-II. Effect of heat transfer coefficient, aspect ratio, and temperature-dependent viscosity, Int J Heat and Mass Transfer 36, 2175-2182. https://doi.org/10.1016/S0017-9310(05)80148-6
  4. COWI, 2004, Pre-design guide for ground source cooling systems with thermal energy storage, Nordic Energy Research report P-57725-A-1 ADM 02.
  5. Dalenack J. O., 1990, Central solar heating plants with seasonal storage, Status report SCBR D14:1990, 1-105.
  6. Eames P. C. and B. Norton, 1998, The effect of tank geometry on thermally stratified sensible heat storage subject to low Reynolds number flows, Int J Heat and Mass Transfer 41, 2131-2142. https://doi.org/10.1016/S0017-9310(97)00349-9
  7. ECES, 1997, Underground thermal energy storage: procedures for environmental impact assessment, Working report.
  8. EWI, 1987, Speicherung von Warme niedriger temperatur in Bohrlochern, NEFF-Projekt 105.1, Elektrowatt Ingenieurunternehmung AG, Zurich, pp. 89.
  9. Gabriesson A., M. Lehtmets, L. Moritz and U. Bergdahl, 1997, Heat storage in soft clay, field tests with heating ($70^{\circ}C$) and freezing of the soil, SGI report 53, 1-128.
  10. Hahne E. and Y. Chen, 1998, Numerical study of flow and heat transfer characteristics in hot water stores, Solar Energy 64, 9-18. https://doi.org/10.1016/S0038-092X(98)00051-6
  11. Hariharan K., K. Badrinarayana, S. S. Murthy and M. V. Murthy, 1991, Temperature stratification in hot-water storage tanks, Energy 16, 977-982. https://doi.org/10.1016/0360-5442(91)90057-S
  12. IEA (International Energy Agency), 2008, ANNEX VIII-Improved cogeneration and heat utilization in DH networks, IEA report 8DHC-08-02.
  13. Ismail K. A. R, J. F. B. Leal and M. A. Zanardi, 1997, Models of liquid storage tanks, Int J Energy Research 22, 805-815. https://doi.org/10.1016/S0360-5442(96)00172-7
  14. Karlsson A., 2011, Personal communication.
  15. Kato Y., 2005, Chemical heat storage technologies for thermal energy transportation, Workshop of Annex 18-Transportation of energy by utilization of thermal energy storage technology, Bad Tolz, Germany.
  16. Matrawy K. K., I. Farkas and J. Buzas, 1996, Optimum selection of the aspect ratio of solar tank, Proceedings of EuroSun'96, Freiberg, Germany, 251-255.
  17. Molz F. J., A. D. Parr, P. F. Andersen, V. D. Lucido and J. C. Warman, 1979, Thermal energy storage in a confined aquifer: experimental results, Water Resources Research 15.6, 1509-1514. https://doi.org/10.1029/WR015i006p01509
  18. Nelson J. E. B., A. R. Balakrishnan and S. S. Murthy, 1999, Parametric study on thermally stratified chilled water storage systems, Applied Thermal Engineering 19, 89-115. https://doi.org/10.1016/S1359-4311(98)00014-3
  19. Nordell B., 1990, A borehole heat store in rock at the University of Lulea, Status report SCBR D12:1990, 1-56.
  20. Nordell B., 2000, Large-scale thermal energy storage, Proceedings of Winter Cities 2000, Lulea, Sweden, 1-10.
  21. Pilebro H., 2011, Personal communication.
  22. Pfiffer M., M. Durin, J. Despois and B. Fritz, 1991, The heat storage project at Plaisir-Thiverval-Grignon, conclusions after three years of field experiments, Proceedings of the fifth international conference on energy storage (Thermastock 91), Utrecht, Netherlands, 1.16.1-1.16.6.
  23. Sanner B. and K. Knoblich, 1998, New IEA-Activity ECES ANNEX 12 High temperature underground thermal energy storage, Proceedings of the second Stockton international geothermal conference, New Jersey, USA, pp. 1.1-1.9 of International section.
  24. Saugy B., J. J. Miserez and B. Matthey, 1988, Stocakge saisonnier de chaleur dans l'aquifere, stocakge pilote d'energie par ouvrage souterrain (SPEOS), Resultats de 5 ans de fonctionnement, Proceedings of the fourth conference on energy storage (Jigastock 88), Paris, France, 325-326.
  25. Schleisner Ibsen L., B. Qvale and C. Boesen, 1991, Windup of the Danish aquifer thermal energy storage plant, answers gained ans questions remaining, Proceedings of the fifth international conference on energy storage (Thermastock 91), Utrecht, Netherlands, 1.7.1-1.7.6.
  26. SKANSKA, 1983a, New ways to solve the energy problem: Building underground, World Construction, 21-22.
  27. SKANSKA, 1983b, Swedish rock technique: Lyckebo seasonal energy storage plant, SKANSKA technical brochure.
  28. Van Loon L.J.M and A. Paul, 1991, Aquifer thermal energy storage at the State University of Utrecht, Proceedings of the fifth international conference on energy storage (Thermastock 91), Utrecht, Netherlands, 1.3.1-1.3.7.
  29. Walton M., 1986, University of Minnesota aquifer heat storage project, STES-Newsletter VIII.3, 1-7.
  30. Wijsman A. J. T. M., 1988, Monitoring results of the Groningen CSHPSS, Proceedings of the fourth international conference on energy storage (Jigastock 88), Paris, France, 543-547.
  31. 신병철, 김상돈, 박건유, 박원훈, 1987, 고온 축열재료의 특성, 한국태양에너지학회지 7.1, 61-74.
  32. 심병완, 이철우, 2010, 천부 지열에너지로서의 지하 열에너지 저장 기술 동향, 대한자원환경지질학회지 43.2, 197-205.
  33. 주홍진, 김정배, 곽희열, 2008, 태양열 축열조의 종횡비에 따른 열성층화 수치해석 연구, 한국태양에너지학회 추계학술발표회 논문집, 178-183.
  34. 한국에너지기술연구원, 2008, 태양열설비 시스템 표준화, 지식경제부 연구보고서.

Cited by

  1. Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES) vol.22, pp.3, 2012, https://doi.org/10.7474/TUS.2012.22.3.188
  2. Review on Thermal Storage Media for Cavern Thermal Energy Storage vol.22, pp.4, 2012, https://doi.org/10.7474/TUS.2012.22.4.243
  3. Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes vol.23, pp.4, 2013, https://doi.org/10.7474/TUS.2013.23.4.308