DOI QR코드

DOI QR Code

Effect of Temperature and Various Pre-treatments on Germination of Hippophae rhamnoides Seeds

갈매보리수나무 종자의 온도 및 여러 가지 전처리에 따른 발아반응

  • Received : 2012.01.03
  • Accepted : 2012.02.17
  • Published : 2012.02.29

Abstract

This study was carried out to test seed germination responses to temperatures and pre-treatments in Hippophae rhamnoides, which has many abilities in antioxidant activity, soil improvement and erosion control. H. rhamnoides seeds were placed at 10, 15, 20, 25, 30 and $35^{\circ}C$ under light condition. As the results, germination percentage (GP) was the highest at 15 and $20^{\circ}C$, and mean germination time (MGT), germination rate (GR) and germination value (GV) were the highest at $25^{\circ}C$. Quadratic and linear regression model were used to determine the cardinal temperatures such as base ($T_b$), maximum ($T_m$) and optimum ($T_o$) temperature for germination. In quadratic regression model using PG, $T_b$, $T_m$ and $T_o$ was estimated as 0.6, 36.4 and $18.5^{\circ}C$, respectively, and temperature range for germination was $35.8^{\circ}C$. In linear regression model using GR, $T_b$, $T_m$ and $T_o$ was estimated as 8.3, 35.4 and $25.3^{\circ}C$, respectively, and temperature range for germination was $27.2^{\circ}C$. Germination properties were investigated after H. rhamnoides seeds were treated by prechilling (1, 2, 4, 6 and 8 weeks), stratification (2, 4, 6 and 8 weeks), solid matrix priming (seed : carrier : water = 5 : 1 : 7, 8, 9 and 10), osmo-priming (-0.25, -0.5, -1.0 and -1.5 MPa) and calcium chloride ($CaCl_2$) -priming (100, 200, 300 and 400 mM). The highest GP was observed in $CaCl_2$ 300 and 400 mM treatments, and MGT was the shortest in stratification 6 and 8 weeks treatments. GR and GV were the highest and GP was the second highest when seeds were prechilled for 1 and 2 weeks. Consequently, prechilling 1 or 2 weeks treatment was considered as the appropriate method when we contemplate qualitative and quantitative effects in seedling production.

본 연구는 기능성 작물, 사방용 수종, 토양개량 등 활용성이 뛰어난 갈매보리수나무의 유용 유전자원의 장기보존 및 실생번식에 도움을 주고자 종자의 발아 온도조건 및 전처리에 대한 발아특성을 구명하고자 실시되었다. 갈매보리수나무 종자는 $10{\sim}35^{\circ}C$의 온도조건에 치상한 결과, 15, $20^{\circ}C$에서 발아율이 가장 높았으며, 평균발아일수, 발아속도 및 발아치는 $25^{\circ}C$에서 가장 좋은 결과를 나타내었다. 또한 주요 발아온도를 예측하기 위하여 2차 및 선형 회귀분석모델을 이용하였는데, 발아율을 이용한 2차 회귀분석 모델에서는 기준온도 $0.6^{\circ}C$, 최대온도 $36.4^{\circ}C$, 적정온도 $18.5^{\circ}C$로 나타났으며, 발아가능 온도범위는 $35.8^{\circ}C$이었다. 발아속도를 이용한 선형 회귀분석모델에서는 기준온도 $8.3^{\circ}C$, 최대온도 $35.4^{\circ}C$, 적정온도 $25.3^{\circ}C$로 나타났으며, 발아가능 온도범위는 $27.2^{\circ}C$로 분석모델간 차이를 나타내었다. 갈매보리수나무 종자를 생리적 처리 방법인 예냉, 층적 및 priming을 이용하여 전처리한 후 발아특성을 조사한 결과, 발아율에서는 $CaCl_2$ 300, 400 mM priming 처리구에서 가장 높은 수치를 나타내었다. 평균발아일수는 층적 6, 8주 처리구에서 가장 짧게 나타났으나 대조구 보다 발아율이 낮은 것으로 보아 발아일수의 단축 보다는 발아의 종기 종료로 판단되었다. 발아속도 및 발아치의 경우 예냉 1, 2주 처리구에서 가장 높게 나타났으며 발아율 또한 $CaCl_2$ 300, 400 mM 처리구에 이어 높은 수치를 나타내어 유묘 생산시 양적 질적 측면을 고려했을 때 가장 적정한 조건으로 판단 되었다.

Keywords

References

  1. Aflakpui, G.K.S., P.J. Gregory and R.J. Froud-Williams. 1998. Effect of temperature on seed germination rate of Striga hermonthica (Del.) Benth. Crop Protection 17: 129-133. https://doi.org/10.1016/S0261-2194(97)00096-3
  2. Alvarado, V. and K.J. Bradford. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25:1061-1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x
  3. Asakawa, S. 1956. Thermoperiodic control of germination of Fraxinus mandshurica var. Japonica seeds. J. Japanese Forestry Soc. 38:269-272.
  4. Bailey, L.H. and E.Z. Bailey. 1978. Hortus third. A concise dictionary of plant cultivated in the United States and Canada. McMillan Publ. Co., New York, USA.
  5. Barton, L.V. 1965. Seed dormancy; General survey of dormancy types in seeds, and dormancy imposed by external agents. In Encyclopedia of Plant Physiology. Ruhland, Springer, Berlin, Germany. Vol. 15. pp. 699-720.
  6. Baskin, J.M. and C.C. Baskin. 1988. Germination ecophysiology of herbaceous plant species in a temperature region. American J. Bot. 72:286-305.
  7. Bewley, J.D. and M. Black. 1982. Physiology and Biochemistry of Seeds in Relation to Germination. 2nd ed. Springer- Verlag Press, Berlin, Heidelberg and New York. p. 375.
  8. Bewley, J.D. and M. Black.1994. Seeds: Physiology of Development and Germination. Plenum Press. NewYork. pp. 257-292.
  9. Barnett, J.P. 1972. Seed coat influence dormancy of loblolly pine seeds. Canadian J. Forest Research 2:7-10. https://doi.org/10.1139/x72-002
  10. Bonner, F.T. 1967. Germiantion of sweetgum seed in response to light. J. For. 65:339.
  11. Borret, O. 1954. The germinated capacity of Aspen. Medd. Noroke Skogforsoksv. 13:1-44.
  12. Bradford, K.J., D.M. May, B.J. Hoyle, Z.S. Skibinski, S.T. Scott and K.B. Tyler. 1988. Seed and soil treatment to improve emergence of muskmelon from cold or crusted soils. Crop Sci. 28:1001-1005. https://doi.org/10.2135/cropsci1988.0011183X002800060028x
  13. Choi, C.H. 2010. Variation in seed germination response to temperature among provenances and enhancement of germination uniformity by priming treatments in Fraxinus rhynchophylla. Ph.D. Thesis, Chonbuk National University. pp. 58-62 (in Korean).
  14. Choi, C.H., B.S. Seo, S.Y. Kim and W.J. Park. 2007. Effect of hot water treatment times on moisture absorption and germination of Albizzia julibrissin seeds. Korean J. Plant Res. 20:267-271 (in Korean).
  15. Close, D.C. and S.T. Wilson. 2002. Provenance effect of pre-germination treatments for Eucalyptus regnans and E. delegatensis seed. Forest Ecol. Management 170:299-305. https://doi.org/10.1016/S0378-1127(01)00768-X
  16. Copeland, L.O. and M.B. Mcdonald. 1985. Principles of Seed Science and Technology. Burgess Publishing Co., Minneapolis, USA. pp. 103-120.
  17. Czabator, F.J. 1962. Germination value: an index combining speed and completeness of pine seed germination. For. Sci. 8:386-396.
  18. Ekpong, B. 2009. Effect of seed maturity, seed storage and pre-germination treatments on seed germination of cleome (Cleome gynandra L.). Sci. Hort. 119:236-240. https://doi.org/10.1016/j.scienta.2008.08.003
  19. Flores, J. and O. Briones. 2001. Plant life-from and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. J. Arid Environments 47:485- 497. https://doi.org/10.1006/jare.2000.0728
  20. Ganju, L., Y. Padwad, R. Singh, D. Karan, S. Chanda, K.M. Chopra, P. Bhatnagar, R. Kashyap and R.C. Sawhney. 2005. Anti-inflammatory acitivity of sea buckthorn (Hippophae rhamnoides) leaves. Inter. Immunopharm. 5:1675-1684. https://doi.org/10.1016/j.intimp.2005.03.017
  21. Geetha, S., M. SaiRam, V. Sligh, G. Ilavazhagan and R.C. Sawhney. 2002. Antioxidant and immunomodulatory properties of seabuckthurn an in-vitro study. J. Ethnopharm. 79:373-378. https://doi.org/10.1016/S0378-8741(01)00406-8
  22. Gosling, P.G., Y. Samuel and A. Peace. 2003. The effects of moisture contents and prechill duration on dormancy breakage of Douglas fir seeds (Pseudotsuga menziesii var. menziesii[Mirb.]Franco). Seed Sci. Res. 13:239-246. https://doi.org/10.1079/SSR2003141
  23. Hardegree, S.P. 2006. Predicting germination responses to temperature. III. Model validation under field-variable temperature conditions. Ann. Bot. 98:827-834. https://doi.org/10.1093/aob/mcl163
  24. Hardegree, S.P. and A.H. Winstral. 2006. Predicting germination responses to temperature. II. Three-dimensional regression, statistical griding and interative-probit optimization using measured and interpolated-subpopulation data. Ann. Bot. 98:403-410. https://doi.org/10.1093/aob/mcl112
  25. Heit, C.E. 1976. Laboratory germination testing of Hippophae rhamnoides. Newsletter AOSA 50:19-24.
  26. Hemmat, M., G.W. Zeng and A.A. Khan. 1985. Response of intact and scarified culy dock (Rumex crispus) seeds to physical and chemical stimuli. Weed Sci. 33:658-664.
  27. Heydecker, W. 1977. Stress and seed germination: An agronomic view, In Elsevier A.K. (ed.), The Physiology and Biochemistry of Seed Dormancy and Germination, North Holland and Biomedical Press, Amsterdam, Holland. pp. 237-282.
  28. Hilhorst, H.W.M and C.M. Karssen. 1992. Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul. 11:225-238. https://doi.org/10.1007/BF00024561
  29. Huang Z., X. Zhang, G. Zheng and Y. Gutterman. 2003. Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. J. Arid Environments 55:453-464. https://doi.org/10.1016/S0140-1963(02)00294-X
  30. Hwang, H.J. 1994. Effects of temperature and ligtht quality on seed germination of Rhododendron weyrichii Max. Proceedings of the 1994 Annual Meeting of the Korean Society for Horticultural Science. pp. 170-171 (in Korean).
  31. Jones, S.K. and P.G. Gosling. 1994. 'Target moisture content' prechill overcomes dormancy of temperate conifer seeds. New Forest 8:309-321.
  32. Kambizi, L., P.O. Adebola and A.J. Afolayan. 2006. Effects of temperature, pre-chilling and light on seed germination of Withania somnifera; a high value medicinal plant. South African J. Bot. 72:11-14. https://doi.org/10.1016/j.sajb.2005.03.001
  33. Kamkar, B., A. Koocheki, M.N. Mahallati and P.R. Moghaddam. 2006. Cardinal temperatures for germination in three millet specieses (Panicum miliaceum, Pennisetum glaucum and Setaria italica). Asian J. Plant Sciences 5:316-319. https://doi.org/10.3923/ajps.2006.316.319
  34. Kang, Y.H. 2009. Plant Physiology. Ji-Gu Publishing Co., Ltd. Paju, Korea. pp. 455-456 (in Korean).
  35. Kelly, K.M., J. van Staden and W.E. Bell. 1992. Seed coat structure and dormancy. Plant Growth Regulation 11:201- 209. https://doi.org/10.1007/BF00024559
  36. Khan, A.A. 1997. Quantification of seed dormancy: physiological and molecular consideration. HortScience 32:609-614.
  37. Khan, A.A., K.L. Tao and C.H. Roe. 1973. Application of chemicals in organic solvents to dry seeds. Plant Physiol. 52:79-81. https://doi.org/10.1104/pp.52.1.79
  38. Khan, M.A. and S. Gulzar. 2003. Light, salinity and temperature effects on the seed germination of perennial grasses. American J. Bot. 90:131-134. https://doi.org/10.3732/ajb.90.1.131
  39. Khatab, A.M., E.G. Haggag and M.H. Grace. 2006. Cytotoxic investigation of Cynara sibthorpiana. Asian J. Chem. 18:423-431.
  40. Komilis, D.P., E. Karatzas and C.P. Halvadakis. 2005. The effect of olive mill wastewater on seed germination after various pre-treatment techniques. J. Environmental Management 74:339-348. https://doi.org/10.1016/j.jenvman.2004.09.009
  41. Li, T.S.C. and W.R. Schroeder. 1996. Sea buckthorn (Hippophae rhamnoides L.): A multipurpose plant. Hort. Technology 6:370-380.
  42. Marisol, T.B. and B.L. Johnson. 2008. Seed germination response of cuphea to temperature. Industrial Crops and Products 27:17-21. https://doi.org/10.1016/j.indcrop.2007.05.004
  43. Moot, D.J., W.R. Scott, A.M. Roy and A.C. Nicholls. 2000. Base temperature and thermal time requirements for germination and emergence of temperate pasture species. New Zealand J. Agri. Res. 43:15-25. https://doi.org/10.1080/00288233.2000.9513404
  44. Nunez, M.R. and L. Calvo. 2000. Effect of high temperatures on seed germination of Pinus sylvestris and Pinus halepensis. Forest Ecology and Management 131:183-190. https://doi.org/10.1016/S0378-1127(99)00211-X
  45. Phartyal, S.S., R.C. Thapliyal, J.S. Nayal, M.M.S. Rawat and G. Joshi. 2003. The influences of temperatures on seed germination rate in Himalayan elm (Ulums wallichiana). Seed Sci. Technol. 31:83-93. https://doi.org/10.15258/sst.2003.31.1.09
  46. Pollock, B.M. and H.O. Olney. 1959. Studies of the rest period : Growth, translocation, and respiration changes in the embryonic organs of the after-ripening cherry seed. Plant Physiol. 34:131-142. https://doi.org/10.1104/pp.34.2.131
  47. Rehman, S. and I.H. Park. 2000. Effect of scarification, GA and chilling on the germination of goldenrain-tree (Koelreuteria panuculata Laxm.) seeds. Sci. Hort. 85: 319-324 https://doi.org/10.1016/S0304-4238(00)00126-6
  48. Rousi, A. 1971. The genus Hippophae L. A taxonomic study. Ann. Bot. Fenn. 8:177-227.
  49. Ryu, K.O. and H.E. Kim. 2003. Development of techniques and handling for seedling production of yellow-poplar (Liriodendron tulipifera L.). J. Korean For. Soc. 92: 236-245 (in Korean).
  50. Sacande, M., H.W. Pritchard and A.E. Dudley. 2004. Germination and storage characteristics of Prunus africana seeds. New Forests 27:239-250. https://doi.org/10.1023/B:NEFO.0000022233.01017.73
  51. Schopmeyer, C.S. 1974. Seed of Woody Plants in the United States. Agric. Handbook no. 450. Forest Service, USDA, Washington D.C. p. 883.
  52. Scott, S.J., R.A. Jones, and W.A. Williams. 1984. Review of data analysis methods for seed germination. Crop Sci. 24:1160-1162.
  53. Slabaugh, P.E. 1974. Hippophae. In: Seeds of woody plants in the United States. Forest Service. USDA. Washington, DC. pp. 446-447.
  54. Slafer, G.A. and R. Savin. 1991. Developmental base temperature in different phenological phases of wheat (Triticum aestivum). J. Expt. Bot. 42:1077-1082. https://doi.org/10.1093/jxb/42.8.1077
  55. Taghvaei, M. and M. Ghaedi. 2010. The impact of cardinal temperature variation on the germination of Haloxylon aphyllum L. seeds. J. Ecol. Field Biol. 33:187-193. https://doi.org/10.5141/JEFB.2010.33.3.187
  56. Tak, W.S., C.H. Choi and T.S. Kim. 2006. Change in the seed characteristics and germination properties of Ulmus dividiana var. Japonica according to seed collection time. J. Korean For. Soc. 95:316-322 (in Korean).
  57. Thompson, P.A. 1970. Characterization of the germination responses to temperature of species and ecotypes. Nature 225:827-831. https://doi.org/10.1038/225827a0
  58. Tiitinen, K.M., B. Yang, G.G. Haraldsson, S. Jonsdottir and H.P. Kallio. 2006. Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides) varieties. J. Agric. Food Chem. 54:2508-2513. https://doi.org/10.1021/jf053177r
  59. Tomer, R.P.S. and K. Slingh. 1993. Hard seed studies in rice bean (Vigna umbellata). Seed Sci. Technol. 21:679-683.
  60. Villalobos, A.E. and D.V. Pelaez. 2001. Influences of temperature and water stress on germination and establishment of Prosopis caldenia Burk. J. Arid Environments 49:321-328. https://doi.org/10.1006/jare.2000.0782
  61. Villalobos, A.E. and D.V. Pelaez.,R.M. Boo, M.D. Mayor and O.R. Elia. 2002. Effect of high temperatures on seed germination of Prosopis caldenia Burk. J. Arid Environments 52:371-378. https://doi.org/10.1006/jare.2002.1004
  62. Washitani, I. and A. Takenaka. 1984. Mathematics of the seed germination dependency on time and temperature. Plant, Cell and Environ. 7:359-362.
  63. Yeoung, Y.R. and D.O. Wilson. 1995. Effects of oxygen concentrations and water potentials during priming on seed germination of muskmelon. J. Korean Soc. Hort. Sci. 36:192-198.
  64. Gangwondo Agricultural Research and Extension Service, Agricultural Information, www.ares.gangwon.kr

Cited by

  1. Effect of Physical Pre-treatment of Mature Seed in Callus Formation and Plant Regeneration of Zoysiagrass vol.35, pp.4, 2015, https://doi.org/10.5333/KGFS.2015.35.4.316
  2. Effects of Priming and Ultra Sound on Seed Germination from Ardisia crenata Sims, an Ornamental Plant vol.8, pp.1, 2014, https://doi.org/10.11624/KJNC.2014.8.1.001
  3. Comparison of Germination Characteristics and Various Pre-treatment Methods for Enhancing Germination on Zoysiagrass vol.3, pp.3, 2014, https://doi.org/10.5660/WTS.2014.3.3.232
  4. Germination Characterisitics of Abies koreana Wilson Seed in Subalpine Coniferous Forest by Collecting Location vol.52, pp.1, 2018, https://doi.org/10.14397/jals.2018.52.1.133
  5. 산민들레 종자의 발아특성 연구 vol.24, pp.3, 2012, https://doi.org/10.7783/kjmcs.2016.24.3.177
  6. 채취 시기와 발아 온도에 따른 진달래의 종자 및 발아 특성 vol.107, pp.3, 2012, https://doi.org/10.14578/jkfs.2018.107.3.237
  7. 숙주식물을 활용한 멸종위기야생식물II급 한라송이풀 종자의 형태 및 발아특성 vol.108, pp.3, 2012, https://doi.org/10.14578/jkfs.2019.108.3.290
  8. Effects of Plug Cell Trays, Soil and Shading Rates on Seed Germination and Seedling Growth Characteristics of Hippophae rhamnoides L. vol.36, pp.1, 2012, https://doi.org/10.7747/jfes.2020.36.1.55