DOI QR코드

DOI QR Code

Effects of implant collar design on marginal bone and soft tissue

임플란트의 collar design이 변연골과 연조직에 미치는 영향

  • Yoo, Hyun-Sang (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kang, Sun-Nyo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 유현상 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 강선녀 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 정창모 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 윤미정 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 전영찬 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2011.12.23
  • Accepted : 2012.01.05
  • Published : 2012.01.31

Abstract

Purpose: The purpose of this study was to investigate the effects of implant collar design on marginal bone change and soft tissue response by an animal test. Materials and methods: Two types of Implant (Neobiotech Co. Seoul, Korea) that only differs in collar design were planted on two healthy Beagle dogs. The implants were divided into two groups, the first group with a beveled collar (Bevel Group) and the second group with "S" shaped collar (Bioseal group). Standardized intraoral radiographs were used to investigate the mesio-distal change of the marginal bone. Histological analysis was done to evaluate the bucco-lingual marginal bone resorption and the soft tissue response adjacent to the implant. Mann-Whitney test was done to compare the mesio-distal marginal bone change at equivalent time for taking the radiographs and the tissue measurements between the groups. Results: Radiographic and histological analysis showed that there was no difference in marginal bone change between the two groups (P>.05). Histological analysis showed Bioseal group had more rigid connective tissue attachment than the Bevel group. There was no difference in biological width (P>.05). Bevel group showed significantly longer junctional epithelium attachment and Bioseal group showed longer connective tissue attachment (P<.05). Conclusion: For three months there were no differences in marginal bone change between the Bevel group and the Bioseal group. As for the soft tissue adjacent to the implant, Bioseal group showed longer connective tissue attachment while showing shorter junctional epithelium attachment. There were no differences in biologic width.

연구 목적: 임플란트 경부가 잘 설계된 경우 양호한 연조직 반응을 통해 변연골을 보존하는데 도움이 된다. 본 실험에서는 연, 경조직 경계부에 가장 가까이 위치하는 임플란트의 collar design이 변연골 변화와 연조직 반응에 미치는 영향을 동물실험을 통해 알아보고자 하였다. 연구 재료 및 방법: 2마리의 건강한 Beagle dog에 임플란트 collar design만 다른 두 종류의 임플란트(Neobiotech Co. Seoul, Korea)를 식립하였다. Collar에 bevel 을 부여한 군(Bevel군)과 "S"자 형태를 부여한 군(Bioseal 군)으로 나누어 마리 당 7개, 군당 7개, 총 14개의 임플란트를 무작위로 식립한 후 Healing abutment를 즉시 체결하였다. 디지털 표준구내 방사선사진을 이용해 4주 간격으로 총 12주간 근원심 변연골 변화를 관찰하였고, 12주에 희생하여 조직학적 분석을 통해 협설 변연골 흡수 및 임플란트 주변 연조직 반응을 평가하였다. Mann-Whitney test를 통해 동일한 방사선 사진 촬영 시점에서 근원심 변연골 변화량 및 조직계측치를 군 간 비교하였고, Kruskal-Wallis test를 통해 방사선 사진상 근원심 변연골 변화량이 시간에 따른 차이가 있는지 군 내 분석 한 후 Duncan test를 통해 사후 검증하였다(${\alpha}=.05$). 결과: 방사선학적 분석 결과 각 촬영 시점에서 두 군간 근원심 변연골 변화량의 차이를 보이지 않았다(P>.05). 군내에서 시간에 따른 근원심 변연골의 흡수량을 분석한 결과 Bevel 군에서는 시간에 따른 차이를 보이지 않았으나 (P>.05), Bioseal 군에서는 시간에 따른 차이를 보였으며, 4주및 8주와 비교했을 때 12주에서 변연골의 증가를 보였다(P<.05). 조직학적 분석 결과 협설측 변연골 흡수량에서 두 군간 차이를 보이지 않았으나 (P>.05), Bevel 군에 비해 Bioseal 군에서 더 견고한 결합조직부착을 관찰할 수 있었으며, 생물학적 폭경의 값은 두 집단 간 차이를 보이지 않은 반면에 (P>.05), 접합상피부착은 Bevel 군에서 유의하게 길었고, 결합조직부착은 Bioseal 군에서 더 길게 나타났다(P<.05). 결론: Bevel 군에 비해 Bioseal 군에서 결합조직부착은 길게 형성된 반면에 접합상피부착은 더 짧게 나타났으며, 생물학적 폭경과 초기 변연골 흡수에는 차이가 없음을 알 수 있었다. 연조직 반응의 차이가 실제 기능하중 하에서 변연골 변화에 미치는 영향에 대해서 향후 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  2. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410. https://doi.org/10.1016/S0022-3913(83)80101-2
  3. Linkow LI, Rinaldi AW, Weiss WW Jr, Smith GH. Factors influencing long-term implant success. J Prosthet Dent 1990;63:64-73. https://doi.org/10.1016/0022-3913(90)90269-I
  4. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-111. https://doi.org/10.1034/j.1600-0501.1992.030302.x
  5. Misch CE. Stress factors: influence on treatment. In: Misch CE. Dental Implant Prosthetics. St. Louis, Mosby; 2005. p. 71-90.
  6. Haider R, Watzek G, Plenk H. Effects of drill cooling and bone structure on IMZ implant fixation. Int J Oral Maxillofac Implants 1993;8:83-91.
  7. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-152. https://doi.org/10.1034/j.1600-0501.1996.070208.x
  8. Duyck J, Rnold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 2001;12:207-218. https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  9. Piattelli A, Ruggeri A, Franchi M, Romasco N, Trisi P. An histologic and histomorphometric study of bone reactions to unloaded and loaded non-submerged single implants in monkeys: a pilot study. J Oral Implantol 1993;19:314-320.
  10. Miyata T, Kobayashi Y, Araki H, Motomura Y, Shin K. The influence of controlled occlusal overload on peri-implant tissue: a histologic study in monkeys. Int J Oral Maxillofac Implants 1998;13:677-683.
  11. Miyata T, Kobayashi Y, Araki H, Ohto T, Shin K. The influence of controlled occlusal overload on peri-implant tissue. Part 3: A histologic study in monkeys. Int J Oral Maxillofac Implants 2000;15:425-431.
  12. Miyata T, Kobayashi Y, Araki H, Ohto T, Shin K. The influence of controlled occlusal overload on peri-implant tissue. part 4: a histologic study in monkeys. Int J Oral Maxillofac Implants 2002;17:384-390.
  13. Lekholm U, Ericsson I, Adell R, Slots J. The condition of the soft tissues at tooth and fixture abutments supporting fixed bridges. A microbiological and histological study. J Clin Periodontol 1986;13:558-562. https://doi.org/10.1111/j.1600-051X.1986.tb00847.x
  14. Adell R, Lekholm U, Rockler B, Branemark PI, Lindhe J, Eriksson B, Sbordone L. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg 1986;15:39-52. https://doi.org/10.1016/S0300-9785(86)80010-2
  15. Rams TE, Roberts TW, Tatum H Jr, Keyes PH. The subgingival microbial flora associated with human dental implants. J Prosthet Dent 1984;51:529-534. https://doi.org/10.1016/0022-3913(84)90309-3
  16. Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol 1996;23:971-973. https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
  17. Bae EK, Chung MK, Cha IH, Han DH. Marginal tissue response to different implant neck design. J Korean Acad Prosthodont 2008;46:602-609. https://doi.org/10.4047/jkap.2008.46.6.602
  18. Hermann F, Lerner H, Palti A. Factors influencing the preservation of the periimplant marginal bone. Implant Dent 2007;16:165-175. https://doi.org/10.1097/ID.0b013e318065aa81
  19. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68:186-198. https://doi.org/10.1902/jop.1997.68.2.186
  20. Hermann JS, Buser D, Schenk RK, Higginbottom FL, Cochran DL. Biologic width around titanium implants. A physiologically formed and stable dimension over time. Clin Oral Implants Res 2000;11:1-11. https://doi.org/10.1034/j.1600-0501.2000.011001001.x
  21. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-549. https://doi.org/10.1902/jop.2000.71.4.546
  22. Kim S, Oh KC, Han DH, Heo SJ, Ryu IC, Kwon JH, Han CH. Influence of transmucosal designs of three one-piece implant systems on early tissue responses: a histometric study in beagle dogs. Int J Oral Maxillofac Implants 2010;25:309-314.
  23. Gardner DM. Platform switching as a means to achieving implant esthetics. N Y State Dent J 2005;71:34-37.
  24. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26:9-17.
  25. Maeda Y, Miura J, Taki I, Sogo M. Biomechanical analysis on platform switching: is there any biomechanical rationale? Clin Oral Implants Res 2007;18:581-584. https://doi.org/10.1111/j.1600-0501.2007.01398.x
  26. Quaresma SE, Cury PR, Sendyk WR, Sendyk C. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol 2008;34:1-6. https://doi.org/10.1563/1548-1336(2008)34[1:AFEAOT]2.0.CO;2
  27. Kim DY, Kim TI, Seol YJ, Lee YM. Influence of platform switching on crestal bone resorption. J Korean Acad Periodontol 2008;38:135-142. https://doi.org/10.5051/jkape.2008.38.2.135
  28. Lee SY, Piao CM, Koak JY, Kim SK, Kim YS, Ku Y, Rhyu IC, Han CH, Heo SJ. A 3-year prospective radiographic evaluation of marginal bone level around different implant systems. J Oral Rehabil 2010;37:538-544. https://doi.org/10.1111/j.1365-2842.2010.02083.x
  29. Yun HJ, Park JC, Yun JH, Jung UW, Kim CS, Choi SH, Cho KS. A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants. J Periodontal Implant Sci 2011;41:211-217. https://doi.org/10.5051/jpis.2011.41.5.211
  30. de Almeida FD, Carvalho AC, Fontes M, Pedrosa A, Costa R, Noleto JW, Mourão CF. Radiographic evaluation of marginal bone level around internal-hex implants with switched platform: a clinical case report series. Int J Oral Maxillofac Implants 2011;26: 587-592.
  31. Baumgarten H, Cocchetto R, Testori T, Meltzer A, Porter S. A new implant design for crestal bone preservation: initial observations and case report. Pract Proced Aesthet Dent 2005;17:735-740.
  32. Korean academy of oral and maxillofacial radiology. Intraoral radiography. In: Oral and Maxillofacial Radiology. 3rd ed. Seoul; Narae publishing; 2001. p. 70-115.
  33. Baffone GM, Botticelli D, Pantani F, Cardoso LC, Schweikert MT, Lang NP. Influence of various implant platform configurations on peri-implant tissue dimensions: an experimental study in dog. Clin Oral Implants Res 2011;22:438-444. https://doi.org/10.1111/j.1600-0501.2010.02146.x
  34. Abrahamsson I, Berglundh T, Lindhe J. The mucosal barrier following abutment dis/reconnection. An experimental study in dogs. J Clin Periodontol 1997;24:568-572. https://doi.org/10.1111/j.1600-051X.1997.tb00230.x

Cited by

  1. Clinical evaluation of mandibular implant overdentures via Locator implant attachment and Locator bar attachment vol.8, pp.4, 2016, https://doi.org/10.4047/jap.2016.8.4.313
  2. A Clinical Retrospective Study of Distal Extension Removable Partial Denture with Implant Surveyed Bridge or Stud Type Attachment vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/7140870
  3. Radiographic evaluation of computer aided design/computer aided manufacturing (CAD/CAM) customized abutment of implant vol.55, pp.3, 2017, https://doi.org/10.4047/jkap.2017.55.3.258
  4. 리튬 디실리케이트-지르코니아 이중도재관과 단일구조 지르코니아로 제작된 구치부 고정성 임플란트 지지 보철물의 전향적 임상연구: 24개월 추적관찰 vol.57, pp.2, 2012, https://doi.org/10.4047/jkap.2019.57.2.134
  5. Clinical Evaluation of Lithium Disilicate Pressed Zirconia and Monolithic Zirconia in Posterior Implant-Supported Prostheses vol.23, pp.1, 2012, https://doi.org/10.32542/implantology.2019001
  6. Retrospective Clinical Study of a Freely Removable Implant-Supported Fixed Dental Prosthesis by a Microlocking System vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/7929585