DOI QR코드

DOI QR Code

Analysis of attachment, proliferation and differentiation response of human mesenchymal stem cell to various implant surfaces coated with rhBMP-2

다양한 rhBMP-2 코팅 임플란트 표면에서의 인간 간엽 줄기세포의 부착, 증식, 분화반응 분석

  • Lee, In-Ku (Department of Medical Science, Major in Dentistry, Korea University) ;
  • Han, In-Ho (Department of Chemical and Biomolecular Engineering, Patent and Tradement office) ;
  • Hwang, Sun-Wook (Department of Neuroscience, Medical research institute, Ansan Hospital, Korea University) ;
  • Ryu, Jae-Jun (Department of Prosthodontics, Ansan Hospital, Korea University)
  • 이인구 (고려대학교 의과대학 치의학교실) ;
  • 한인호 (특허청 화학생명공학 심사국) ;
  • 황선욱 (고려대학교 안산병원 의과학연구소 신경생리학과) ;
  • 류재준 (고려대학교 안산병원 치과 보철과)
  • Received : 2011.12.26
  • Accepted : 2012.01.11
  • Published : 2012.01.31

Abstract

Purpose: In this paper we tried to evaluate the most appropriate surface for rhBMP-2 coating among 4 rough titanium surfaces. Materials and methods: We used machined surface as a control group and anodized, RBM and SLA surfaces as test groups. We coated rhBMP-2 on the 4 surfaces and with uncoated surfaces for each case, we cultured human mesenchymal stem cells on all 8 surfaces. 24 hours after we measured the stem cell' attachment with SEM, and on 3rd, 7th, and 14th days, we checked the cell proliferation and differentiation by using MTT and ALP activity assay. And on the 7th day after the culture, we performed RT-PCR assay to determine whether the expression levels of Type I collagen, osteocalcin, osteopontin were changed. Results: We observed with SEM that 4 rhBMP-2 coated surfaces exhibited wider and tighter cell attachment and more cell process spreading than uncoated surfaces. The anodized rhBMP-2 surface caused robustest effects. In MTT assay we could not find any meaningful difference. In ALP assay there was a significant increase (P<.05) in the ALP activity of anodized rhBMP-2 coated surface compared with that of the control (3rd and 14th days) and with that of the RBM rhBMP-2 coated surface (14th day). In RT-PCR assay there was increased expressions in the anodized rhBMP-2 coated surface for osteocalcin, and osteopontin. Conclusion: We found that the anodized rhBMP-2 coated surface were most prominent stem cell attachment and differentiation in compared to control and Machined rhBMP-2 coated, RBM rhBMP-2 coated surface.

연구 목적: 본 실험은 거친 표면으로 유의성 있는 줄기세포반응을 나타냈던 4 가지의 티타늄 표면 위에 rhBMP-2를 코팅했을 때 어떤 유의한 줄기세포반응(세포부착, 증식, 분화)이 나타나는지 비교 분석함으로 rhBMP-2 코팅을 위한 가장 적절한 표면을 평가하기 위해 시행되었다. 연구 재료 및 방법: 대조군인 기계절삭표면(machined surface)과 실험군인 양극산화(anodized), RBM, SLA 표면에 rhBMP-2를 코팅한 후 코팅하지 않은 표면과 같이 8가지 표면 위에 인간줄기세포를 배양하였다. 배양 후 24시간 후 SEM을 통해 줄기세포의 부착을 평가하였고 배양 3, 7, 14일후MTT와 ALP 검사를 통해 줄기세포의 증식과 분화반응을 평가하였다. 그리고 배양 7일후RT-PCR 검사를 통해 Type I collagen, osteocalcin, osteopontin의 유전자 발현의 변화를 평가하였다. 결과: SEM 평가에서 4가지 rhBMP-2 표면이 코팅하지 않은 표면에 비해 세포부착 면적이 넓고 긴밀하며 세포돌기가 더 많이 관찰되었다. 양극산화 rhBMP-2코팅표면에서 가장 두드러지게 관찰되었다. MTT 검사에서 크게 의미 있는 차이는 나타나지 않았다. ALP검사에서 양극산화 rhBMP-2코팅 표면은 대조군과 비교해서 (3, 14일) 또 RBM rhBMP-2 코팅 표면과 비교해서 (14일) 유의성 있는 ALP 활성도의 증가를 나타내었다(P<.05). RT-PCR 검사에서 osteocalcin과 osteopontin의 유전자 발현은 양극산화 rhBMP-2코팅 표면에서 높게 나타났다. 결론: 양극산화 rhBMP-2코팅표면이 줄기세포의 부착과 분화실험에서 대조군표면과 rhBMP-2를 코팅한 기계절삭표면이나 RBM 표면에 비해 유의성 있는 증가를 나타냈다(P<.05).

Keywords

References

  1. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topography on the osseointegration of implant materials in trabecular bone. J Biomed Master Res 1995;29:1567-1576. https://doi.org/10.1002/jbm.820291213
  2. Bessho K, Carnes DL, Cavin R, Chen HY, Ong JL. BMP stimulation of bone response adjacent to titanium implants in vivo. Clin Oral Implants Res 1999;10:212-218. https://doi.org/10.1034/j.1600-0501.1999.100304.x
  3. Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res 2007;86:84-89. https://doi.org/10.1177/154405910708600114
  4. Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Scharnweber D, Kuhlisch E, Loukota R, Eckelt U. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int J Oral Maxillofac Surg 2008;37:54-59. https://doi.org/10.1016/j.ijom.2007.05.024
  5. Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implants Res 2005;16:563-569. https://doi.org/10.1111/j.1600-0501.2005.01143.x
  6. Hartwig CH, Esenwein SA, Pfund A, Kusswetter Dagger W, Herr G. Improved osseointegration of titanium implants of different surface characteristics by the use of bone morphogenetic protein (BMP-3): an animal study performed at the metaphyseal bone bed in dogs. Z Orthop Ihre Grenzgeb 2003;141:705-711. https://doi.org/10.1055/s-2003-812411
  7. Esenwein SA, Esenwein S, Herr G, Muhr G, Kusswetter W, Hartwig CH. Osteogenetic activity of BMP-3-coated titanium specimens of different surface texture at the orthotopic implant bed of giant rabbits. Chirurg 2001;72:1360-1368. https://doi.org/10.1007/s001040170043
  8. Aebli N, Stich H, Schawalder P, Theis JC, Krebs J. Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. J Biomed Mater Res A 2005;73:295-302.
  9. Sumner DR, Turner TM, Urban RM, Turek T, Seeherman H, Wozney JM. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res 2004;22:58-65. https://doi.org/10.1016/S0736-0266(03)00127-X
  10. Hall J, Sorensen RG, Wozney JM, Wikesjo UM. Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. J Clin Periodontol 2007;34:444-451. https://doi.org/10.1111/j.1600-051X.2007.01064.x
  11. Choi KH, Moon KO, Kim SH, Yun JH, Jang KL, Cho KS. Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system. J Korean Acad Periodontol 2008;38:41-50. https://doi.org/10.5051/jkape.2008.38.1.41
  12. Song SJ, Jeon O, Yang HS, Han DK, Kim BS. Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells. J Microbiol Biotechnol 2007;17:1113-1119.
  13. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-241. https://doi.org/10.1080/08977190412331279890
  14. Urist MR. Bone formation by autoinduction. Science 1965;150: 893-899. https://doi.org/10.1126/science.150.3698.893
  15. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528-1534. https://doi.org/10.1126/science.3201241
  16. Wozney JM. Overview of bone morphogenetic proteins. Spine 2002;27:S2-S8. https://doi.org/10.1097/00007632-200208151-00002
  17. Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Mundy GR, Harris SE. Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif Tissue Int 1997;60:283-290. https://doi.org/10.1007/s002239900230
  18. Takuwa Y, Ohse C, Wang EA, Wozney JM, Yamashita K. Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3- E1. Biochem Biophys Res Commun 1991;174:96-101. https://doi.org/10.1016/0006-291X(91)90490-X
  19. Brekke JH, Toth JM. Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res 1998;43:380-398 https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<380::AID-JBM6>3.0.CO;2-D
  20. Lim TY, Wang W, Shi Z, Poh CK, Neoh KG. Human bone marrow- derived mesenchymal stem cells and osteoblast differentiation on titanium with surface-grafted chitosan and immobilized bone morphogenetic protein-2. J Mater Sci Mater Med 2009;20:1-10
  21. Shi Z, Neoh KG, Kang ET, Poh CK, Wang W. Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules 2009;10:1603-1611. https://doi.org/10.1021/bm900203w
  22. Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, Dean DD, Schwartz Z, Boskey AL. Osteoblastmediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 2002;71:519-529. https://doi.org/10.1007/s00223-001-1114-y
  23. Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, Daculsi G. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials 2005;26:157-165. https://doi.org/10.1016/j.biomaterials.2004.02.033
  24. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 2008;4:535-543. https://doi.org/10.1016/j.actbio.2007.12.002
  25. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-2875. https://doi.org/10.1016/j.biomaterials.2003.09.048
  26. Wall I, Donos N, Carlqvist K, Jones F, Brett P. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 2009;45:17-26. https://doi.org/10.1016/j.bone.2009.03.662
  27. Wennerberg A. On surface roughness and implant incorporation (Thesis). Goteborg: Dept of Biomaterials, University of Goteborg, Sweden, 1997.
  28. Balasundaram G, Yao C, Webster TJ.$ TiO_{2}$nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 2008;84:447-453.

Cited by

  1. Enhancement of osseointegration by direct coating of rhBMP-2 on target-ion induced plasma sputtering treated SLA surface for dental application vol.31, pp.6, 2017, https://doi.org/10.1177/0885328216679761