Physico.chemical Properties of Inorganic Materials Currently Used as Root Medium Components for Crop Production in Korean Plant Factories

국내에서 식물공장용 배지 재료로 유통되는 무기물의 토양 물리화학적 특성

  • Shin, Bo Kyoung (Department of Horticulture, College of Agriculture, Chungnam National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Choi, Jong Myung (Department of Horticulture, College of Agriculture, Chungnam National University)
  • 신보경 (충남대학교 농업생명과학대학 원예학과) ;
  • 손정익 (서울대학교 농업생명과학대학 원예학과) ;
  • 최종명 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2012.09.12
  • Accepted : 2012.10.29
  • Published : 2012.12.31

Abstract

Inorganic materials were commonly used as container media in domestic plant factories. Objective of this research was to secure the information in soil physical and chemical properties of inorganic materials such as vermiculites and perlites. To achieve this, 12 gold and silver vermiculites from China, Zimbabwe, and South Africa and 5 perlites from China were collected based on the marketing grades (MG) in particle sizes and analyzed for determination of their characteristics. The percentage of particles larger than $710{\mu}m$, in China perlite MG 3~5 mm, China silver vermiculites MG > 8 mm and MG 3~8 mm were 99.9%, 99.8%, and 99.7%, respectively, which were much higher than 28.4% in China gold vermiculite MG 0.3~1.0 mm, 14.0% in perlite MG < 1.0 mm, and 12.6% of Zimbabwe silver vermiculite MG < 1.0 mm. The container capacities of perlite MG < 1.0 mm and South Africa silver vermiculite MG 0.25~1.0 mm were 72.0% and 71.1%, respectively. The air space in China silver vermiculite MG 3~8 mm was 49.3% which was higher than other materials tested. However, the China gold and silver vermiculites MG 0.3~1 mm had 3.5% and 2.4% in air space indicating that possible problems could occur in soil aeration when they are used for container media. The percentage of easily available and buffering water of China gold vermiculite MG 0.3~1 mm and perlite MG < 1.0 mm were the highest among test materials. The ranges of pH and electrical conductivity were 6.36 to 10.7 and 0.032 to $0.393dS{\cdot}m^{-1}$ in vermiculites and 7.78 to 8.62 and 0.030 to $0.041dS{\cdot}m^{-1}$ in perlite, respectively. The cation exchange capacity of China silver vermiculite MG 0.3~1 mm were $14.7cmol{\cdot}kg^{-1}$ that was 10 times as high as $0.34cmol{\cdot}kg^{-1}$ in perlite MG 1~2.5 mm. The vermiculites had the higher contents of exchangeable cations such as Ca, K, and Na, than those of perlites.

국내에서 유통되고 있는 무기배지재료인 버미큘라이트(12점)와 펄라이트(5점)의 물리 화학적 특성을 분석하여 혼합배지 조제를 위한 기초자료를 얻기 위하여 본 연구를 수행하였다. $710{\mu}m$ 이상의 직경을 갖는 입자의 비율이 버미큘라이트 중 중국산 silver 3~8mm가 99.7%로 조사되어 가장 비율이 높았고, 펄라이트는 3~5mm에서 99.9%로 가장 높았다. 펄라이트(<1mm)와 남아프리카공화국산 silver 버미큘라이트(0.25~0.7mm)의 용기용수량은 각각 72.0 및 71.1%로 가장 높았고, 기상률은 중국산 silver 3~8mm가 49.3%로 뚜렷하게 높았다. 펄라이트 5종류의 공극률은 60% 이상으로 측정되었으며, 용기용수량은 1mm 이하의 규격을 갖는 물질을 제외하고 20.4~39.7%의 범위에 포함되었다. 버미큘라이트 중 중국산 gold 0.3~1mm와 남아프리카공화국산 0.25~0.7mm가 쉽게 이용할 수 있는 수분(EAW)와 완충수(BW)의 비율이 높았고, 펄라이트는 1mm 이하와 0.7~1.5mm의 EAW와 BW의 비율이 높았다. 화학적 특성에서 버미큘라이트는 pH가 6.36~10.74 범위에 포함되는 강알칼리성 물질이었고, 전기전도도(EC)는 $0.032{\sim}0.393dS{\cdot}m^{-1}$로 측정되어 종류간 차이가 큼을 알 수 있었다. 펄라이트의 pH는 7.788.62 범위에 포함되어 약알칼리성이었으며, EC는 $0.030{\sim}0.041dS{\cdot}m^{-1}$로 측정되었다. 양이온교환용량은 중국산 silver 버미큘라이트 0.3~1mm가 $14.7cmol^+{\cdot}kg^{-1}$으로 가장 높았고, 펄라이트는 0.71.5mm가 $1.51cmol^+{\cdot}kg^{-1}$로 가장 높았는데 버미큘라이트보다 약 10배 가량 낮았다. 버미큘라이트는 펄라이트보다 Ca, K 및 Na과 같은 치환성 양이온 함량이 많았다.

Keywords

References

  1. Argo, W.R. 1998a. Root medium physical properties. HortTechnology 8:481-485.
  2. Argo, W.R. 1998b. Root medium chemical properties. HortTechnology 8:486-494.
  3. Cataldo, D.A., M. Haren, L.E. Schrader, and V.L. Young. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil. Sci. Plant Anal. 6:71-80. https://doi.org/10.1080/00103627509366547
  4. Chaney, A.L. and E.P. Marback. 1962. Modified reagents for determination of urea and ammonia. Clinical Chem. 8:130-132.
  5. Chapman, H.D. and P.F. Pratt. 1961. Method of analysis for soil, plants and waters. Univ. of Calif., Div. Agr. Sci., Berkeley, CA.
  6. Choi, J.M., I.Y. Kim, and B.K. Kim. 2009. Root Substrates. Hackyesa. Daejeon, Korea.
  7. Choi, J.M., J.H. Chung, and J.S. Choi. 1999. Physical properties of pine bark affected by peeling method and improving moisture retention capacity. J. Kor. Soc. Hort. Sci. 40;363-367.
  8. Choi, J.M., J.W. Ahn, J.H. Ku, and Y.B. Lee. 1997. Effect of medium composition on physical properties of soil and seeding growth of red-pepper in plug system. J. Kor. Soc. Hort. Sci. 38(6):618-624.
  9. Hendershot, W.H., H. Lalande, and M. Duqutte. 1993. Ion exchange and exchangeable cations, p. 167-176. In: M.R. Carter (ed.). Soil sampling and methods of analysis. Can. Soc. Soil Sci., Lewis Publisher, Toronto.
  10. Milks, R.R., W.C. Fonteno, and R.A. Larson. 1989. Hydrology of horticultural substrates: II. Predicting physical properties of media in containers. J. Amer. Soc. Hort. Sci. 114:53-56.
  11. Nelson, P.V. 2003. Greenhouse operation and management. 6th ed. Prentice Hall, Englewood Cliffs, NJ.
  12. Wallach, R., F.F. da Silva, and Y. Chen. 1992. Hydraulic characteristics of Tuff (Scoria) used as a container medium. J. Amer. Soc. Hort. Sci. 117:415-421.
  13. Warncke, D.D. 1986. Analyzing greenhouse growth media by the saturation extraction method. Hort- Science 21:223-225.
  14. Rowell, D.L. 1994. Soil science: Methods and applications. Longman Science & Technical. Bunt Mill, Harlow. England.
  15. Fonteno, W.C. and P.V. Nelson. 1990. Physical properties of and plant responses to rockwool-amended media. J. Amer. Soc. Hort. Sci. 115:375-381.