Charantin Contents and Fruit Characteristics of Bitter Gourd (Momordica charantia L.) Accessions

여주의 유전자원별 과실특성과 Charantin 성분 함량

  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Moon, Ji-Hye (Urban Agriculture Research Team, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Lee, Woo-Moon (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Kim, Ae-Kyung (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Woo, Young-Hoe (Korea National College of Agriculture and Fisheries) ;
  • Park, Dong Kum (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA)
  • 이희주 (농촌진흥청 국립원예특작과학원 원예작물부 채소과) ;
  • 문지혜 (농촌진흥청 국립원예특작과학원 도시농업팀) ;
  • 이우문 (농촌진흥청 국립원예특작과학원 원예작물부 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 원예작물부 채소과) ;
  • 김애경 (농촌진흥청 국립원예특작과학원 원예작물부 채소과) ;
  • 우영회 (한국농수산대학) ;
  • 박동금 (농촌진흥청 국립원예특작과학원 원예작물부 채소과)
  • Received : 2012.10.03
  • Accepted : 2012.11.07
  • Published : 2012.12.31

Abstract

Bitter gourd (Momordica charantia L.) has long been used for food and medicinal plant in Korea, China and Japan. This study aimed at evaluating productivity, and vitamin-C and charantin contents in bitter gourd (Momordica charantia L.) accessions. The contents of charantin of these two accessions were analyzed using HPLC with the UV-diode array detection. The highest fruit yield was observed in accessions, 'BG1' and 'BG7.' The vitamin-C contents of fruits in these two high-yield bitter gourd accessions, 'BG1' and 'BG7,' depended on days after fruit set and were highest in 24 days and 17 days after fruit set, respectively. The charantin contents of the two accessions were different according to the number of days after fruit set. The charantin content of 'BG1' was highest in fruits harvested at 24 days and followed by 15 days after fruit set. The charantin content of 'BG7' was highest in fruits harvested at 13 days and followed by 16 and 19 days after fruit set. The charantin contents of 13 M. charantia accessions with relatively high yield potential were analyzed and three accessions, 104615, K169995 and NS454, were selected based on their relatively high yield and charantin content. These accessions will be used for breeding program and processed foods.

국내에 보유하고 있는 여주 유전자원을 대상으로 과실특성과 charantin 함량을 분석하고, 추후 유전자원을 다양한 용도로 활용하고자 수행하였다. 2010년에 선발된 수량이 높은 계통 2점의 charantin 함량을 HPLC 분석한 결과, 착과 후 일수에 따른 함량의 변이를 보였는데, BG1은 착과 후 24일 15일순으로 charantin 함량이 높게 나타나 착과 후반부에 charantin 함량이 높게 나타난 반면 BG7은 착과 후 일수가 13일에 가장 높았고, 16일 19일 순으로 charantin 함량이 높게 나타나 착과 전반부에 charantin 함량이 높아지는 것으로 나타났다. Charantin 성분 함량이 높은 여주품종 선발 및 수확시기 규명을 위하여 한국, 중국, 인도, 일본 등에서 도입한 유전자원 33점과 시판종 1점중 수량이 높은 13점의 과실특성 및 charantin 함량을 HPLC 분석한 결과 charantin 함량이 높은 104615, K169995, 엔에스454을 선발하였다. 따라서 수량이 높은 13점의 여주자원중 charantin 함량이 높았던 K169995나 NS454은 새로운 품종 육성이나 가공용으로 활용할 수 있으며, 수량이 많았던 K161952나 K051434 등은 과실 생산 목적으로 활용할 수 있을 것으로 생각되고, 착과후 시기별로 용도에 따라 수확을 하여 이용하면 좋을 것으로 생각된다.

Keywords

References

  1. Adams, P. and L.C. Ho. 1992. The susceptibility of modem tomato cultivars to blossom end rot in relation to salinity. J. Hort. Sci. 67:827-839.
  2. Ali, L., A.K. Khan, M.I. Mamun, M. Mosihuzzaman, N. Nahar, M. Nur-e-Alam, and B. Rokeya. 1993. Studies on hypoglycemic effects of fruit pulp, seed, and whole plant of Momrdica charantia on normal and diabetic model rats. Planta Med. 59:408-412. https://doi.org/10.1055/s-2006-959720
  3. Behera, T.K., S.S. Dey, A.D. Munshi, B. Ambika, A.P. Gaikwad, and I. Singh. 2009. Sex inheritance and development of gynoecious hybrids in bitter gourd. Scientia Horticulturae 120:130-133. https://doi.org/10.1016/j.scienta.2008.09.006
  4. Dey, S.S., A.K., Singh, D. Chandel, and T.K. Behera. 2006. Genetic diversity of bitter gourd (Momordica charantia L.) genotypes revealed by RAPD markers and agronomic traits.. Scientia Horticulturae 109:21-28. https://doi.org/10.1016/j.scienta.2006.03.006
  5. Jittawan, K. and Siriamornpun, S. 2008. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry 110:881-890. https://doi.org/10.1016/j.foodchem.2008.02.076
  6. Lawrence, L., R. Birtwhistle, J. Kotecha, S. Hannah, and S. Cuthbertson. 2009. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. British Journal of Nutrition 102:1703- 1708. https://doi.org/10.1017/S0007114509992054
  7. Lee, J.W. 2010. Chemical and physiological properties of bitter melon (Momordica charantia L.). Disser-tation (Ph. D.), Chonbuk Natl. Univ., Korea.
  8. Nadine, B., M. Gbeassor, K. Akpagana, J. Hudson, K.D. Soussa, K. Koumaglo, and J.T. Arnason. 2005. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in togo and relation to its phytochemistry and biological activity. Journal of Ethnopharmacology 96:49-55. https://doi.org/10.1016/j.jep.2004.08.009
  9. Olaofea, O., B.Y. Okiribitia, and M.O. Aremub. 2008. Chemical evaluation of the nutritive value of smooth luffa (Luffa cylindrica) seed's kernel. EJEAFChe 7: 3444-3452.
  10. Park, Y., H.O. Boo, Y.L. Park, D.H. Cho, and H.H. Lee. 2007, Antioxidant activity of Momordica charantia L. extracts. Kor. J. Medicinal Crop Sci. 15:56-61.
  11. Parreira, M.C., C.N. Piffer, G.F.G.P. Roberto, and A.A.D.A. Luis. 2011. Water, temperature and light on bitter melon germination. Bioscience Journal 27: 363-370.
  12. Poma, A., K. Galeota, M. Miranda, and L. Spano. 1997. A ribosome-inactivating protein principle from hairy roots and seeds of Luffa cylindrica (L) Roem and its cytotoxicity on melanotic and melanoma cell lines. International Journal of Pharmacognosy 35:212-214. https://doi.org/10.1076/phbi.35.3.212.13299
  13. Raman, A. and C. Lau. 1996. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucarbitaceae). Phytomedicine 2:349-362. https://doi.org/10.1016/S0944-7113(96)80080-8
  14. Sharma, S.R., S.K. Dwivedi, and V.P. Vershney. 1996. Antihyperglycaemic and insulin release effects of Aegle mamelos leaves in sterptozotocin-diabetic rats. Phytother. Res. 10:426-428. https://doi.org/10.1002/(SICI)1099-1573(199608)10:5<426::AID-PTR861>3.0.CO;2-E
  15. Sook, Y.L., S.H. Eom, Y.K. Kim, N.I. Park, and S.U. Park. 2009. Cucurbitane-type triterpenoids in momordica charantia Linn. Journal of Medicinal Plants Research 3:1264-1269.
  16. Sunil, G., R. Gopal, and M.V. Singh. 2007. Growth and physiological changes in bitter-gourd plants grown with variable calcium supply in sand culture. Journal of Plant Nutrition 30:2051-59. https://doi.org/10.1080/01904160701700509
  17. Tanaka, S., C. Uno, M. Akimoto, M. Tabata, C. Honda, and W. Kamisako. 1991. Anti-allergic effect of bryonolic acid from Luffa cylindrica cell suspension cultures. Planta Med. 57:527-30. https://doi.org/10.1055/s-2006-960199
  18. Tabata. M., S. Tanaka, H.J. Cho, C. Uno, J. Shimakura, and M. Uro. 1993. Production of an anti-allergic triterpene, bryonolic acid, by plant cell cultures. Journal of Natural Products 56:165-174. https://doi.org/10.1021/np50092a001
  19. Wu, S.J. and L.T. Ng. 2007. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT Food Sci. and Tech. 23:325-333.