Development of Multi-span Plastic Greenhouse for Tomato Cultivation

토마토 재배용 연동 플라스틱 온실 개발

  • 유인호 (국립원예특작과학원 시설원예시험장) ;
  • 이응호 (국립원예특작과학원 시설원예시험장) ;
  • 조명환 (국립원예특작과학원 시설원예시험장) ;
  • 류희룡 (국립원예특작과학원 시설원예시험장) ;
  • 김영철 (국립원예특작과학원 시설원예시험장)
  • Received : 2012.10.18
  • Accepted : 2012.11.12
  • Published : 2012.12.31

Abstract

This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

본 연구에서는 토마토 재배에 적합한 규격을 가지면서 기상재해에 안전한 토마토 재배용 연동 비닐하우스를 설계하였다. 토마토 하우스의 규격은 폭 7m, 측고 4.5m, 동고 6.5m이다. 1995년에 농촌진흥청에서 개발한 1-2W형 하우스와 비교해서 폭은 같지만 측고는 1.8m, 동고는 2m 더 높다. 중방은 작물하중과 장치하중을 견딜 수 있도록 트러스 구조로 설계하였다. 토마토 하우스는 높으면서도 내재해 설계 기준(MIFFAF, 2010)에 맞게 만들어졌다. 즉, 최고 설계 기준인 풍속 $40m{\cdot}s^{-1}$, 적설 40cm 이상에 안전하도록 구조안전성 분석을 통해 하우스 기둥, 서까래 등의 부재 규격과 설치 간격을 설정하였다. 1-2W형 하우스와 달리 토마토 하우스에는 랙-피니언 타입의 천창을 용마루 부분에 설치하여 외부 공기 유입과 자연 환기를 극대화할 수 있도록 하였다. 하우스 높이가 증가하면 난방비는 증가하므로 토마토 하우스에는 보온력이 우수한 다겹 보온커튼을 설치하여 하우스 바깥으로 빠져나가는 열을 최소화하였다.

Keywords

References

  1. Byeon, D.H. 2010. Evaluation of greenhouse functionality according to the change of eave's height. Kyungpook National University. Master thesis (in Korean).
  2. Japan Greenhouse Horticulture Association. 2005. Handbook of protected horticulture. 5th ed. Horticulture Information Center, Tokyo, Japan. p. 38-50 (in Japanese).
  3. Kim, M.K. and S.W. Nam. 1995. Experimental studies on the structural safety of pipe-house. J. Bio-Env. 4(1):17-24 (in Korean).
  4. Korea Society of Steel Construction, 2008. Korean Steel Structure Design Code (KBC2005) (in Korean).
  5. Lee, J.S. 2010. An analysis of structure safety of greenhouse according to column lift. Chunbuk National University. Master thesis (in Korean).
  6. Lee, S.G. 1995. Structural design of plastic greenhouses for prevention of meteorological disaster. Kyungbook National University: p. 1-33 (in Korean).
  7. Lee, S.G., et al. 1995. Greenhouse construction standards. Agriculture and Fisheries Development Corporation. p. 20-60 (in Korean).
  8. Lee, S.G., H.W. Lee, J.W. Lee, and C.S. Gwak. 2006. A study method for structural safety improvement of greenhouse by structural analysis, Proceedings of the 2006 Annual Conference. KSAE:21 (in Korean).
  9. Lee, S.G., J.W. Lee, and H.W. Lee. 2004. Analysis of wind speed and snow depth of single-span plastic greenhouse by growing crop, Proceedings of the 2004 Annual Conference. KSAE:40 (in Korean).
  10. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2010. Standards in disaster tolerance on facilities for horticultural and special crops (in Korean).
  11. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2012. The status of the greenhouse and production records for vegetable crops in 2011. p. 98 (in Korean).
  12. Park, C.W., S.G. Lee, J.W. Lee, and H.W. Lee. 2005. Optimum design of greenhouse structures using continuous and discrete optimum algorithms. Proceedings of the 2005 Annual Conference. KSAE:33 (in Korean).
  13. Ryu, H.R., I.H. Yu, M.W. Cho, and Y.C. Um. 2009. Structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plas tic greenhouse. J. Bio-Env. 18(3):192-199 (in Korean).
  14. Yum, S.H., K.J. Kwon, S.H. Sung, and Y.D. Choi. 2007a. The installation effect and optimal pipe sizes of an anti-wind net by computational analysis. J. Biosystems Eng. 32(6):430-439 (in Korean). https://doi.org/10.5307/JBE.2007.32.6.430
  15. Yum, S.H., N.K. Yun, K.W. Kim, S.H. Lee, Y.H. Cho, S.J. Park, and M.K. Park. 2007b. The optimum specification of pipes in rain-sheltering greenhouse with roof vents for large-grain grapevine cultivation. J. Bio- Env. Con. 16(4):275-283 (in Korean).
  16. Yu, I.H., H.J. Jeong, M.W. Cho, H.R. Ryu, and D.H. Goo. 2009a. Design of single-span plastic greenhouse for strawberry bench-cultivation. Proceedings of Korean Society for Bio-Env. Con., 2009 Autumn Conference 18(2):280 (in Korean).
  17. Yu, I.H., H.Y. You, Y.C. Um, M.W. Cho, and J.K. Kwon. 2009b. Structural design of plastic greenhouse for paprika cultivation. Proceedings of Korean Society for Bio-Environment Control, 2009 Spring Conference 18(1):196-200 (in Korean).