DOI QR코드

DOI QR Code

Thiazole Type Accelerator Effects on Silane/Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties

Thiazole계 가황촉진제가 실란/실리카 충전 천연고무 컴파운드의 가황 거동 및 기계적 물성에 미치는 영향

  • Received : 2011.09.01
  • Accepted : 2011.10.19
  • Published : 2012.03.25

Abstract

A thiazole type accelerator MBT (2-mercapto benzothiazole) was added into silica filled natural rubber (NR) compound with various concentrations (0, 1, 2, 3, 4 phr). The effects of MBT on the cure rate, mechanical property, degree of rubber-filler interaction (${\alpha}_F$), crosslinking density, and viscoelastic property ($tan{\delta}$) were investigated. As accelerator concentration increased, the $t_{s2}$ and $t_{90}$ decreased and the crosslinking density and modulus at 300% elongation increased. The tensile strength and elongation increased up to 3 phr and no further increased at 4 phr. The $tan{\delta}$ value measured at room temperature was higher than that of the $70^{\circ}C$. The ${\alpha}_F$ value was not affected by the addition of MBT. The mechanisms for the vulcanization rate were reviewed.

본 연구에서는 thiazole 계 촉진제인 2-mercapto benzothiazole(MBT)의 첨가량을 변화시켜(0, 1, 2, 3, 4 phr) 실란/실리카로 충전된 천연고무 컴파운드에 첨가하여 가황속도, 물성, 고무-충전제간 상호작용계수(${\alpha}_F$), 가교밀도 및 탄젠트 델타($tan{\delta}$)에 미치는 영향을 비교 평가하였다. 촉진제의 첨가량이 증가할수록 $t_{s2}$, $t_{90}$ 가황시간은 빨라졌고 가교 밀도 및 300% 모듈러스는 증가하였다. 인장강도와 신장률 또한 증가하였으나 3 phr에서는 더 이상의 증가가 없었다. 그리고 상온에서의 $tan{\delta}$ 값은 $70^{\circ}C$에서보다 높은 값을 나타내었다. 촉진제의 함량변화는 천연고무-실란/실리카간 상호관계(${\alpha}_F$)에 큰 영향을 미치지 않는 것으로 관찰되었다. 가황속도에 미치는 메카니즘을 고찰하였다.

Keywords

References

  1. C. Goodyear, U. S. Patent 3, 633 (1844).
  2. G. Oenslager, Ind. Eng. Chem., 23, 232 (1933).
  3. L. Bateman, C. G. Moore, M. Porter, and B. Saville, in The Chemistry and Physics of Rubber like Substances, L. Bateman, Editor, John Wiley and Sons, New York, Chapter 19 (1963).
  4. C. W. Bedford, U. S. Patent 1,371,662 (1921).
  5. L. B. Sebrell and C. W. Bedford, U. S. Patent 1,544,687 (1925).
  6. G. Bruni and E. Romani, Indian Rubber Journal, 62, 18 (1921).
  7. E. Zaucker, M. Bogemann, and L. Orthner, U. S. Patent 1,942,790 (1934).
  8. C. Andrew, An Introduction to Rubber Technology, 2nd ed., Smithers Rapra Technology, Shawbury, 1999.
  9. M. J. R. Loadman and C. W. William, Analysis of Rubber and Rubber-like Polymers, Kluwer Acadamic Publishers, Norwell, 1998.
  10. O. Lorenz and E. Echte, Rubber Chem. Technol., 31, 117 (1958). https://doi.org/10.5254/1.3542252
  11. W. Scheele and M. Cherubim, Rubber Chem. Technol., 34, 606 (1961). https://doi.org/10.5254/1.3540232
  12. E. Morita and E. J. Young, Rubber Chem. Technol., 36, 844 (1963). https://doi.org/10.5254/1.3539615
  13. S. K. Bhatnagar and S. Banerjee, Rubber Chem. Technol., 42, 1366 (1969). https://doi.org/10.5254/1.3539304
  14. J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds, Hanser, Munich, 2008.
  15. M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  16. S. Wolff, Kautsch. Gummi Kunstst., 34, 280 (1981).
  17. S. Wolff, Rubber Chem. Technol., 55, 967 (1982). https://doi.org/10.5254/1.3535926
  18. E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York, 1982.
  19. K. J. Kim and J. VanderKooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
  20. R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
  21. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 7, 50 (2001).
  22. K. J. Kim, Carbon Lett., 10, 109 (2009). https://doi.org/10.5714/CL.2009.10.2.109
  23. K. J. Kim and J. VanderKooi, J. Ind. Eng. Chem., 10, 772 (2004).
  24. K. J. Kim and J. VanderKooi, Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  25. S. M. Kim, C. S. Nam, and K. J. Kim, Appl. Chem. Eng., 22, 144 (2011).
  26. A. Y. Coran, in Science and Technology of Rubber, 3rd ed., J. E. Mark, B. Erman, and F. R. Eirich, Editors, Academic Press, New York, Chapter 7 (2005).
  27. S. Wolff, Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  28. P. J. Flory and J. Rehner, Chem. Phys., 11, 521 (1943).
  29. C. J. Sheelan and A. L. Basio, Rubber Chem. Technol., 39, 149 (1966). https://doi.org/10.5254/1.3544827
  30. A. R. Payne, Rubber Plast. Age, 42, 963 (1961).
  31. A. N. Gent, Engineering with Rubber: How to Design Rubber Components, 2nd ed., Hanser, Munich, 2001.
  32. A. V. Chapman and M. Porter, in Natural Rubber Science and Technology, A. D. Roberts, Editor, Oxford University Press, Oxford, 1988.
  33. M. M. Coleman, J. R. Shelton, and J. K. Koening, Rubber Chem. Technol., 46, 938 (1973). https://doi.org/10.5254/1.3547419
  34. A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964). https://doi.org/10.5254/1.3540360
  35. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 58, 2193 (1995). https://doi.org/10.1002/app.1995.070581206
  36. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2643 (1991). https://doi.org/10.1002/app.1991.070421002
  37. P. Ghosh, S. Katare, P. Patkar, J. M. Caruthers, and V. Venkatasubramanian, Rubber Chem. Technol., 76, 592 (2003). https://doi.org/10.5254/1.3547762
  38. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 169 (1994). https://doi.org/10.1002/app.1994.070510117
  39. E. N. Guryanova, Q. Rep. Sulfur. Chem., 5, 113 (1970).
  40. F. Lamar, in Organic Chemistry of Sulfur, S. Oae, Editor, Plenum Press, New York, 1977.
  41. P. J. Nieuwenhuizen, A. W. Ehlers, J. W. Hofstraat, S. R. Janse, M. W. F. Nielen, J. Reedijik, and E. J. Baerends, Chem.-Eur. J., 4, 1816 (1998). https://doi.org/10.1002/(SICI)1521-3765(19980904)4:9<1816::AID-CHEM1816>3.0.CO;2-Z
  42. N. J. Morrison and M. Porter, Rubber Chem. Technol., 57, 63 (1984). https://doi.org/10.5254/1.3536002
  43. C. G. Moore and B. R. Trego, J. Appl. Polym. Sci., 8, 1957 (1964). https://doi.org/10.1002/app.1964.070080504
  44. R. B. Layer, Rubber Chem. Technol., 65, 211 (1992). https://doi.org/10.5254/1.3538601
  45. R. B. Layer, Rubber Chem. Technol., 65, 822 (1992). https://doi.org/10.5254/1.3538644
  46. M. Andreis, J. Liu, and J. L. Koenig, J. Appl. Polym. Sci., Polym. Phys. Ed., 27, 1389 (1989). https://doi.org/10.1002/polb.1989.090270702
  47. C. Y. Choi, S. M. Kim, Y. H. Park, M. K. Jang, J. W. Nah, and K. J. Kim, Appl. Chem. Eng., 22, 411 (2011).
  48. S. M. Kim and K. J. Kim, Korean Society of Industrial and Engineering Chemistry Spring Meeting, ICC JEJU, Jeju, Korea, May (2012).
  49. S. M. Kim and K. J. Kim, Korean Institute of Rubber Industry Spring Meeting, University of Suwon, Korea, March (2012).
  50. S. M. Kim and K. J. Kim, Adv. Polym. Tech., submitted 2012.

Cited by

  1. 실란처리된 실리카가 천연고무 복합소재 내에서 실리카 입자간 상호 관계 계수(αF)에 미치는 영향의 비교 vol.47, pp.1, 2012, https://doi.org/10.7473/ec.2012.47.1.018
  2. 실란농도가 실리카 / 천연고무 복합소재의 실리카 입자간 상호 관계 계수 (αF)에 미치는 영향의 비교 vol.47, pp.1, 2012, https://doi.org/10.7473/ec.2012.47.1.023
  3. Evaluation on the Biodegradability of the MBT Wastewater vol.17, pp.3, 2012, https://doi.org/10.5762/kais.2016.17.3.86
  4. Optimization of Accelerator Mixing Ratio for EPDM Rubber Grommet to Improve Mountability Using Mixture Design vol.9, pp.13, 2012, https://doi.org/10.3390/app9132640
  5. On factors affecting surface free energy of carbon black for reinforcing rubber vol.9, pp.1, 2012, https://doi.org/10.1515/ntrev-2020-0015