DOI QR코드

DOI QR Code

Characteristics of Laser-Induced Breakdown Spectroscopy (LIBS) at Space Environment for Space Resources Exploration

우주 자원 탐사를 위한 레이저 유도 플라즈마 분광분석법의 우주 환경에서의 특성 분석

  • 최수진 (서울대학교 기계항공공학부) ;
  • 여재익 (서울대학교 기계항공공학부)
  • Received : 2011.10.21
  • Accepted : 2012.02.28
  • Published : 2012.04.01

Abstract

The Laser-Induced Breakdown Spectroscopy (LIBS) has great advantages as an analytical technique, namely real-time analysis without sample preparation, ideal for mobile chemical sensor for space exploration. The LIBS plasma characteristics are strongly dependent on the surrounding pressure. In this study, seven types of target (C, Ti, Ni, Cu, Sn, Al, Zn) were investigated for their elemental lifetime. The target was located in vacuum chamber which has the pressure range of 760 to $10^{-5}$ torr. As the pressure is decreased, the elemental lifetimes of carbon and titanium declined, while all other targets showed increased lifetimes until reaching 1 torr and declined with continued pressure decrease. The boiling point and electronegativity amongst the physicochemical properties of the samples are used to explain this peculiarity.

레이저 조사 시 발생되는 플라즈마를 성분 분석에 이용하는 Laser-Induced Breakdown Spectroscopy(LIBS)는 우주 자원 탐사에 적합한 실시간 성분 분석 기술이다. LIBS 플라즈마의 특성은 주위 압력의 영향을 크게 받는다. 본 연구에서는 다양한 물성치를 갖는 일곱 가지 원소(C, Ti, Ni, Cu, Sn, Al, Zn)의 지속시간(lifetime)이 760 - $10^{-5}$ torr의 압력 범위에서 분석되었다. 압력이 낮아짐에 따라 탄소와 티타늄의 lifetime은 감소하였고, 그 밖의 원소들은 1 torr의 압력에서 가장 오랜 시간동안 검출되었다. 원소별 lifetime 결과를 통하여 낮은 압력 하에서 플라즈마의 특성과 원소별 끓는점 및 전기음성도의 관계를 규명하였다.

Keywords

References

  1. R. Rieder, T. Economou, H. W?nke, A. Turkevich, J. Crisp, J. Bruckner, G. Dreibus, H. Y. McSween Jr, "The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode", Science, Vol. 278. No. 5344, 1997, pp. 1771 - 1774. https://doi.org/10.1126/science.278.5344.1771
  2. C. Fabre, S. Maurice, R. Wiens, V. Sautter, "ChemCam LIBS Instrument: Complete Characterization of the Onboard Calibration Silicate Targets (MSL Rover)", 41st Lunar and Planetary Science Conference, No. 1533, 2010, pp. 1835.
  3. G. B. Courreges-Lacoste, B Ahlers, F Rull, "Combined Raman spectrometer / laser-induced breakdown spectrometer for the next ESA mission to Mars", Spectrochimica Acta Part A, 68, 2007, pp. 1023-1028. https://doi.org/10.1016/j.saa.2007.03.026
  4. S. Darwiche, M. Benmansour, N. Eliezer, D. Morvan, "Investigation of optimized experimental parameters including laser wavelength for boron measurement in photovoltaic grade silicon using laser-induced breakdown spectroscopy", Spectrochimica Acta Part B, 2010.
  5. C. B. Dreyer, G. S. Mungas, P. Thanh, J. G. Radziszewski, "Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions," Spectrochimica Acta Part B, 62, 2007, pp. 1448-1459.
  6. S. Yalcin, Y. Y. Tsui and R. Fedosejevs, "Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy," J. Anal. Atomic Spectrom, 19, 2004, 1295-1301. https://doi.org/10.1039/b404132a
  7. J. M. Vadillo, J. M. Fernundez Romero, C. Rodruguez, J. J. Laserna, "Effect of plasma shielding on laser ablation rate of pure metals at reduced pressure," Surface and Interface Analysis, Vol. 27, Issue 11, 1999, pp. 1009-1015. https://doi.org/10.1002/(SICI)1096-9918(199911)27:11<1009::AID-SIA670>3.0.CO;2-2
  8. A. J. Effenberger, Jr., J. R. Scott, "Effect of atmospheric conditions on LIBS spectra," Sensors, 10, 2010, pp. 4907-4925. https://doi.org/10.3390/s100504907

Cited by

  1. The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser vol.44, pp.9, 2016, https://doi.org/10.5139/JKSAS.2016.44.9.789
  2. LIBS Analysis on Magnetic Force of Dissimilar Material Using SMAW vol.31, pp.4, 2013, https://doi.org/10.5781/KWJS.2013.31.4.54