DOI QR코드

DOI QR Code

Synthesis of Multi-Terminalized Magnetic-Cored Dendrimer for Adsorption of Chromium and Enhancement of Magnetic Recovery

크롬 흡착 및 자성회수율 향상을 위한 멀티터미널 자성코어 덴드리머의 합성

  • Yeo, In-Hwan (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jang, Jun-Won (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Lyung-Joo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Jae-Woo (Department of Civil and Environmental Engineering, Hanyang University)
  • 여인환 (한양대학교 건설환경공학과) ;
  • 장준원 (한양대학교 건설환경공학과) ;
  • 김령주 (한양대학교 건설환경공학과) ;
  • 박재우 (한양대학교 건설환경공학과)
  • Received : 2012.07.05
  • Accepted : 2012.09.28
  • Published : 2012.09.28

Abstract

A chrome absorbent that is useful in rapid magnetic recovery and recycling was developed though a synthesis of Multi-Terminalized Magnetic-core Dendrimer (MTMD). Divergence through coprecipitation and rotation growth was used for synthesis. The dendrimer was multi-terminilized through methyl propionate and glutaric acid. The property analysis of the synthesized sample was performed through XRD, FT-IR, TEM, EDS, TGA and zeta potential analyzer. A magnetic-core of MTMD had a magnetite crystal and the size of 4th generation dendrimer was identified to be from 15 nm to 20 nm. Through the analysis of the TGA, the rate of the dendrimer branch for the first generation dendrimer was about 7% and 3% of diminished weight occurred as the generation grows. Also, the potential of the dendrimer when multi-terminalized, had variation from 25.26 mV to -6.53 mV. As a result of MTMD adsorption experiment, it absorbed more than 80% within 5 minutes and indicated absorptivity of 6.308 mg/g. When it was compared with COOH Dendrimer (COOH-D) after magnetic recovery, the recovery time was rapidly reduced by more than half and it could recover 100% within 30 minutes. In case of the regeneration experiment that used chrome, it was identified to maintain the same adsorptivity for four runs.

본 연구에서는 MTMD의 합성을 통해 빠른 자성회수 및 재사용이 용이한 크롬 흡착제를 개발하였다. 합성을 위해 공침법 및 교대성장을 통한 발산법을 사용하였으며, methyl propionate 및 glutaric acid를 통해 덴드리머를 멀티터미널화 하였다. 합성된 시료의 특성분석은 XRD, FT-IR, TEM, EDS, TGA, Zeta potential analyzer를 통해 이루어졌다. MTMD의 자성코어는 마그네타이트 결정구조를 가졌으며, 4세대 덴드리머의 크기는 15 nm에서 20 nm로 확인되었다. TGA 분석결과 1세대 덴드리머의 유기전도성 가지의 비율은 약 7%였으며 1세대 증가시 3%의 중량 감소가 나타났고 멀티터미널화시 덴드리머의 포텐셜은 -25.26 mV에서 -6.53 mV까지 변화하였다. MTMD 흡착실험 결과 5분 이내에서 80% 이상의 크롬을 흡착하였으며 6.308 mg/g의 흡착능을 나타냈다. 자성 회수시 COOH D와 비교하여 회수시간이 2배 이상 단축되었으며 30분 이내에 100% 회수가 가능하였다. 크롬을 이용한 재생실험의 경우 4회 흡착에도 동일한 흡착능을 유지하였다.

Keywords

Acknowledgement

Supported by : 과학재단, 환경부

References

  1. 김준석, 최성수, 윤문섭, 김상일, "환경기술 기술동향보고서," (2011)
  2. Volesky, B. and Holan, Z., "Biosorption of Heavy Metals," Biotechnol. Prog., 11, 235-250(1995). https://doi.org/10.1021/bp00033a001
  3. Geophysics study committee, Geophysics research forum, Commission on physical sciences, mathematics, and resources, National Research council, Groundwater contamination, National Academy Press, Washington D. C(1984)
  4. Bai, R. S. and Abraham, T. E., "Studies on chromium(VI) adsorption-desorption using immobilized fungal biomass," Bioresour. Technol., 87, 17-26 (2003). https://doi.org/10.1016/S0960-8524(02)00222-5
  5. Agrawal, A., Pal, C. and Sahu, K., "Extractive removal of chromium(VI) from industrial waste solution," J. Hazard. Mater, 159, 458-464(2008). https://doi.org/10.1016/j.jhazmat.2008.02.121
  6. Wang, Q., Gaun, Y., Liu, X., Ren, X. and Yang, M., "Highcapacity adsorption of hexavalent chromium from aqueous solution using magnetic micro-spheres by surface dendrimer graft modification," J. Colloid Interface Sci., 375, 160-166 (2012). https://doi.org/10.1016/j.jcis.2012.02.037
  7. Crooks, R. M., Zhao, M. Sun. L., Chechik, V. and Yeung, L. K., "Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis," Acc. Chem. Res., 31, 181-190(2001).
  8. Diallo, M. S., Christie, S., Swaminathan, P., Johnson, J. H. and Goddard, W. A., "Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal $NH_2$ groups," Environ. Sci. Technol., 39, 1366-1377(2005). https://doi.org/10.1021/es048961r
  9. Van der Bruggena, B., Manttari, M. and Nystrom, M., "Drawbacks of applying nanofiltration and how to avoid them: a review," Sep. Purific. Technol., 63, 251-263(2008). https://doi.org/10.1016/j.seppur.2008.05.010
  10. Chou, C. and Lien, H. S., "Dendrimer-conjugated magnetic nanoparticles for removal of zinc(II) from aqueous solutions," J. Nanoparticle Res., 13, 2099-2107(2011). https://doi.org/10.1007/s11051-010-9967-5
  11. Mehta, R. V., Upadhyay, R. V., Charles, S. W. and Ramchand, C. N., "Direct binding of protein to magnetic particles," Biotechnol. Technol., 77, 493-496(1997).
  12. Pan, B., Cui, D. and Sheng, Y., "Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system," Cancer Res., 67, 8156-9163(2007). https://doi.org/10.1158/0008-5472.CAN-06-4762
  13. Neill, H. S. C. and Dollase, W. A., "Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: $MgCr_2O_4$,$ZnCr_2O_4$, $Fe_3Os$ and the temperature dependence of the cation distribution in $ZnAl_2O_4$," Phys. Chem. Minerals., 20, 541-555(1994). https://doi.org/10.1007/BF00211850
  14. Downs, R. T. and Wallace, H. M., "The American Mineralogist Structure Database," Am. Mineralogist., 88, 247-250 (2003).
  15. Zheng, Z. J., Pan, C. Y., Wang, D. and Liu, Y., "Michael Addition Polymerizations of Trifunctional Amines with Divinyl Sulfone," Macromol. Chem. Phys., 206, 2182-2189 (2005). https://doi.org/10.1002/macp.200500300
  16. Ozturk, O., Black, T. J., Perrine, K., Williams, C. T., Parsons, F. W., Ratliff, J. S., Gao, J., Murphy, C. J., Xie, H., Ploehn, H. J. and Chen, D. A., "Thermal Decomposition of Generation-4 Polyamidoamine Dendrimer Films: Decomposition Catalyzed by Dendrimer-Encapsulated Pt Particles," Langmuir., 21, 3998-4006(2005). https://doi.org/10.1021/la047242n
  17. Xu, Z., Liu, Q. and Finch, J. A., "A Novel Two-Step Silica- Coating Process for Engineering Magnetic Nanocomposites," Appl. Surf. Sci., 120, 269-278(1997). https://doi.org/10.1016/S0169-4332(97)00234-1
  18. Mikhailik, O. M., Fedorenko, O. M., Mikhailova, S. S., Povstugar, V. I., Lyakhovich, A. M., Kurbatova, G. T., Shklovskaya, N. and Chuiko, A. A., "Surface structure of finely dispersed iron powders III. Structure of a $\gamma$-aminopropyltriethoxysilane- modified coating," Colloids Surf., 52, 331-338 (1991). https://doi.org/10.1016/0166-6622(91)80026-K
  19. Li, R. and Bu, J. A., "Study on the reaction kinetics of dendrimerization by FT-IR spectroscopy: propagation of PAMAM dendrimer on silica gel," Kor. J. Chem. Eng., 21, 98-103 (2004). https://doi.org/10.1007/BF02705385
  20. Wapner, K. and Grundmeier, G., "Spectroscopic analysis of the interface chemistry of ultra-thin plasma polymer films on iron," Surf. Coat. Technol., 200, 100-103(2005). https://doi.org/10.1016/j.surfcoat.2005.02.075
  21. 한정상, "지하수환경과 오염," 박영사(1998).
  22. Park, D. H., Yun, Y. S. and Park, J. M., "Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp," Chemosphere, 60, 1356-1364(2005). https://doi.org/10.1016/j.chemosphere.2005.02.020
  23. Alizadeh, A., Khodaei, M. M., Karami, C., Workentin, M. S., Shamsipur, M. and Sadeghi, M., "Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles," Nanotechnol., 21(31), 315503 (2010). https://doi.org/10.1088/0957-4484/21/31/315503
  24. Manabe, M., Tatarazako, N. and Kinoshita, M., "Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae," Aquat. Toxicol., 105, 576-581(2011). https://doi.org/10.1016/j.aquatox.2011.08.020