Effect of Non-ionic Additive on Morphology and Gas Permeation Properties of Polysulfone Hollow Fiber Membrane

비이온계 첨가제에 의한 폴리술폰계 중공사 막의 모폴로지 조절과 기체투과 특성

  • Lee, Hye Jin (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Koh, Mi Jin (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Kim, Duek Ju (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Nam, Sang Yong (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 이혜진 (경상대학교 대학원 나노신소재공학부, 공학연구원, 아이큐브 사업단) ;
  • 고미진 (경상대학교 대학원 나노신소재공학부, 공학연구원, 아이큐브 사업단) ;
  • 김득주 (경상대학교 대학원 나노신소재공학부, 공학연구원, 아이큐브 사업단) ;
  • 남상용 (경상대학교 대학원 나노신소재공학부, 공학연구원, 아이큐브 사업단)
  • Received : 2012.06.20
  • Accepted : 2012.06.28
  • Published : 2012.06.29

Abstract

To improve permeation performance of gas separation membrane, polysulfone hollow fiber membrane was prepared by wet-dry phase inversion method using Triton X-100 as non-ionic additive. And variation of gas permeation behavior by additive was investigated. Various spinning conditions such as air gap, concentration of polymer, dope tank temperature were controlled and these effects were studied. The morphology and gas permeation property of hollow fiber membranes were investigated using scanning electron microscope (SEM) and bubble flow meter respectively. We confirmed that the membranes added with Triton X-100 had a smooth external skin at various air gap length conditions. The macrovoids of these hollow fiber membranes were more developed with increase of air-gap from 4 to 90 cm and that induced higher permeance. The permeance of polysulfone membranes has the higher value at comparatively lower concentration polymer (30 wt% polysulfone) and lower concentration of additive (15 wt% Triton X-100). When temperature in dope tank was controlled, the membranes prepared at $100^{\circ}C$ showed low permeance because of volatilization of additive and solvent.

기체분리용 분리막의 투과성능을 향상시키기 위해 비이온성 첨가제로 Triton X-100을 사용하여 건습식 상분리법에 의하여 polysulfone 중공사 막을 제조하였으며, 첨가제에 따른 기체투과 거동의 변화를 관찰하였다. 또한 에어갭, 고분자의 농도, 도프탱크 온도와 같은 다양한 방사 조건을 조절하여 그 영향을 관찰하였다. 제조된 중공사 막은 전자주사현미경(SEM)과 bubble flow meter를 통해 각각 모폴로지와 기체투과 특성에 대한 평가를 실시하였다. SEM 분석을 통해 Triton X-100이 첨가된 막은 다양한 에어갭에서도 매끄러운 외부 스킨층을 가지는 것을 확인하였다. 중공사 막의 거대기공은 에어갭이 4에서 90 cm로 증가함에 따라 더욱 발달하며, 높은 투과도를 나타내는 것을 확인하였다. 또한 상대적으로 낮은 고분자 농도(30 wt% polysulfone)와 높은 첨가제 농도(15 wt% Triton X-100) 조건에서 높은 투과도를 나타내었다. 도프 탱크 온도를 조절하였을 때, $100^{\circ}C$에서 제조된 막은 첨가제와 용매의 휘발로 인해 낮은 투과특성을 나타냈다.

Keywords

References

  1. T. S. Chung, S. K. Teoh, and X. Hub, "Formation of ultrathin high-performance polyethersulfone hollow- fiber membranes", J. Membr. Sci., 133, 161 (1997). https://doi.org/10.1016/S0376-7388(97)00101-4
  2. M. Khayet, "The effects of air gap length on the internal and external morphology of hollow fiber membranes", Chem. Eng. Sci., 58, 3091 (2003). https://doi.org/10.1016/S0009-2509(03)00186-6
  3. D. Wang, W. K. Teo, and K .Li, "Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes", J. Membr. Sci., 204, 247 (2002). https://doi.org/10.1016/S0376-7388(02)00047-9
  4. A. F. Ismaila, I.R. Dunkinb, S. L. Gallivanb, and S. J. Shilton, "Production of super selective polysulfone hollow fiber membranes for gas separation", Polymer, 40, 6499 (1999). https://doi.org/10.1016/S0032-3861(98)00862-3
  5. D. T. Claus and W. J. Koros, "Formation of defect- free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000). https://doi.org/10.1016/S0376-7388(99)00276-8
  6. S. L. Raghavan, A. Trividic, A. F. Davis, and J. Hadgraft, "Effect of cellulose polymers on supersaturation and in vitro membrane transport of hydrocortisone acetate", Int. J. Pharm., 193, 231 (2000). https://doi.org/10.1016/S0378-5173(99)00345-2
  7. S. Munari, A. Bottino, G. Capannelli, P. Moretti, and P. P. Bon, "Preparation and characterization of polysulfone-polyvinylpyrrolidone based membranes", Desalination, 70, 265 (1988).
  8. J. H. Kim and H. Lee, "Effect of PEG additive on membrane formation by phase inversion", J. Membr. Sci., 138, 153 (1998). https://doi.org/10.1016/S0376-7388(97)00224-X
  9. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309, 209 (2008). https://doi.org/10.1016/j.memsci.2007.10.027
  10. S. Yang and Z. Z. Liu, "Effect of additive on the formation of polyacrylonitrile membrane", J. Environ. Sci., 16, 191 (2004)
  11. E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, and E. Drioli, "Effect of additives in the casting solution on the formation of PVDF membranes", Desalination, 192, 190 (2006). https://doi.org/10.1016/j.desal.2005.09.021
  12. R. L. Riley, R. L. Grabowsky, and Grabowsky, "Preparation of gas separation membranes", US Patent 4,243,701, January 6 (1981).
  13. X. Fu, H. Matsuyam, M. Teramoto, and H. Nagai, "Preparation of polymer blend hollow fiber membrane via thermally induced phase separation", Sep. Purif. Techol., 52, 363 (2006). https://doi.org/10.1016/j.seppur.2006.05.018
  14. M. Wood, "Poly (2,6-dimethyl-1,4-phenylene oxide) hollow fibers for gas separation", Report submitted to the Department of Chemical Engineering, University of Ottawa, Canada (1997).
  15. J. J. Shieh and T. S. Chung, "Effect of liquid-liquid demixing on the membrane morphology, gas permeation, thermal and mechanical properties of cellulose acetate hollow fibers", J. Membr. Sci., 140, 67 (1998). https://doi.org/10.1016/S0376-7388(97)00267-6
  16. M. L. Yeow, Y. T. Liu, and K. Li, "Morphological study of poly(vinylidene fluoride) asymmetric membranes : effects of the solvent, additive, and dope temperature", J. Appl. Polym. Sci., 92, 1782 (2004). https://doi.org/10.1002/app.20141
  17. H. A. Tsai, M. J. Hong, G. S. Huang, Y. C. Wang, C. L. Li, K. R. Lee, and J. Y. Lai, "Effect of DGDE edditive on the morphology and pervaporation performances of asymmetric PSf hollow fiber membranes", J. Membr. Sci., 208, 233 (2002). https://doi.org/10.1016/S0376-7388(02)00265-X
  18. S. R. Park, B. J. Chang, H. S. Anh, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their $O_2/N_2$ permeation properties", Membrane Journal, 21, 62 (2011).
  19. D. Wang, K. Li, and W. K. Teo, "Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation", J. Membr. Sci., 138, 193 (1998). https://doi.org/10.1016/S0376-7388(97)00229-9
  20. K. Kneifel and K. V. Peinemann, "Preparation of hollow fiber membranes from polyetherimide for gas separation", J. Membr. Sci., 65, 295 (1992). https://doi.org/10.1016/0376-7388(92)87030-2
  21. S. R. Choi, S. J. Park, B. K. Seo, K. W. Lee, S. T. Nam, and M. J. Han, "Effect of propionic acid additive on preparation of phase inversion polysulfone membrane", Membrane Journal, 18, 261 (2008).
  22. J. Xu and Z. L. Xu, "Poly (vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent", J. Membr. Sci., 208, 203 (2002). https://doi.org/10.1016/S0376-7388(02)00261-2
  23. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and properties of hollow fiber membrane for gas separation using CTA", Membrane Journal, 21, 98 (2011).