DOI QR코드

DOI QR Code

Long-term Repeated-Batch Operation of Immobilized Escherichia coli Cells to Synthesize Galactooligosaccharide

  • Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation) ;
  • Yeon, Ji-Hyeon (Department of Biotechnology, Korea National University of Transportation) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
  • 투고 : 2012.04.09
  • 심사 : 2012.06.21
  • 발행 : 2012.11.28

초록

In this study, we investigated whether galactooligosaccharide (GOS) can be stably and steadily synthesized using immobilized ${\beta}$-galactosidase (${\beta}$-gal) inclusion body (IB)-containing E. coli cells during long-term repeated-batch operation. To improve the operational stability of this enzyme reactor system, immobilized E. coli cells were crosslinked with glutaraldehyde (GA) after immobilization of the E. coli. When we treated with 2% GA for E. coli crosslinking, GOS production continued to an elapsed time of 576 h, in which seven batch runs were operated consecutively. GOS production ranged from 51.6 to 78.5 g/l ($71.2{\pm}10.5$ g/l, n = 7) during those batch operations. In contrast, when we crosslinked E. coli with 4% GA, GOS production ranged from 31.5 to 64.0 g/l ($52.3{\pm}10.8$, n = 4), and only four consecutive batch runs were operated. Although we did not use an industrial ${\beta}$-gal for GOS production, in which a thermophile is used routinely, this represents the longest operation time for GOS production using E. coli ${\beta}$-gal. Improved stability and durability of the cell immobilization system were achieved using the crosslinking protocol. This strategy could be directly applied to other microbial enzyme reactor systems using cell immobilization to extend the operation time and/or improve the reactor system stability.

키워드

참고문헌

  1. Asraf, S. S. and P. Gunasekaran. 2010. Current trends of ${\beta}$-galactosidase research and application, pp. 880-890. In A. Mendez-Vilas (ed.). Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badajoz, Spain.
  2. Botelho-Cunha, V. A., M. Mateus, J. C. C. Petrus, and M. N. de Pinho. 2010. Tailoring the enzymatic synthesis and nanofiltration fractionation of galacto-oligosaccharides. Biochem. Eng. J. 50: 29-36. https://doi.org/10.1016/j.bej.2010.03.001
  3. Cardelle-Cobas, A., M. Villamiel, A. Olano, and N. Corzo. 2008. Study of galacto-oligosaccharide formation from lactose using Pectinex Ultra SP-L. J. Sci. Food Agric. 88: 954-961. https://doi.org/10.1002/jsfa.3173
  4. Chen, C. W., C. C. Ou-Yang, and C. W. Yeh. 2003. Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enzyme Microb. Technol. 33: 497-507. https://doi.org/10.1016/S0141-0229(03)00155-8
  5. Crittenden, R. G. and M. J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361. https://doi.org/10.1016/S0924-2244(96)10038-8
  6. Ebrahimi, M., L. Placido, L. Engel, K. S. Ashaghi, and P. Czermak. 2010. A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 250: 1105-1108. https://doi.org/10.1016/j.desal.2009.09.118
  7. Gosling, A., G. W. Stevens, A. R. Barber, S. E. Kentish, and S. L. Gras. 2010. Recent advances refining galactooligosaccharide production from lactose. Food Chem. 121: 307-318. https://doi.org/10.1016/j.foodchem.2009.12.063
  8. Huber, R. E., G. Kurz, and K. Wallenfels. 1976. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry 15: 1994-2001. https://doi.org/10.1021/bi00654a029
  9. Hughes, R. C. and P. F. Thurman. 1970. Cross-linking of bacterial cell walls with glutaraldehyde. Biochem. J. 199: 925-926.
  10. Juers, D. H., S. Hakda, B. W. Matthews, and R. E. Huber. 2003. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase. Biochemistry 42: 13505- 13511. https://doi.org/10.1021/bi035506j
  11. Jung, K.-H. 2008. Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442.
  12. Jung, K.-H., J.-H. Yeon, S.-K. Moon, and J. H. Choi. 2008. Methyl ${\alpha}$-D-glucopyranoside enhances the enzymatic activity of recombinant ${\beta}$-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 695-701. https://doi.org/10.1007/s10295-008-0329-6
  13. Lee, S.-E., H.-B. Seo, H.-J. Kim, J.-H. Yeon, and K.-H. Jung. 2011. Galactooligosaccharide synthesis by active ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cells. J. Microbiol. Biotechnol. 21: 1151-1158. https://doi.org/10.4014/jmb.1105.05021
  14. Li, Z., M. Xiao, L. Lu, and Y. Li. 2008. Production of nonmonosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochem. 43: 896-899. https://doi.org/10.1016/j.procbio.2008.04.016
  15. Mahoney, R. R. 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chem. 63: 147-154. https://doi.org/10.1016/S0308-8146(98)00020-X
  16. Martínez-Villaluenga, C., A. Cardelle-Cobas, N. Corzo, A. Olano, and M. Villamiel. 2008. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by beta-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 107: 258-264. https://doi.org/10.1016/j.foodchem.2007.08.011
  17. Mladenoska, I., E. Winkelhausen, and S. Kuzmanova. 2008. Transgalactosylation/hydrolysis ratios of various beta-galactosidases catalyzing alkyl-beta-galactoside synthesis in single-phased alcohol media. Food Technol. Biotechnol. 463: 311-316.
  18. Nagalakshmi, V. and J. S. Pai. 1994. Permeabilization of Escherichia coli cells for enhanced penicillin acylase activity. Biotechnol. Tech. 8: 431-434. https://doi.org/10.1007/BF00154316
  19. Nahalka, J., A. Vikartovska, and E. Hrabarova. 2008. A crosslinked inclusion body process for sialic acid synthesis. J. Biotechnol. 134: 146-153. https://doi.org/10.1016/j.jbiotec.2008.01.014
  20. Nakkharat, P. and D. Haltrich. 2006. Lactose hydrolysis and formation of galactooligosaccharides by a novel immobilized ${\beta}$- galactosidase from the thermophilic fungus Talaromyces thermophilus. Appl. Biochem. Biotechnol. 129-132: 215-225.
  21. Neri, D. F. M., V. M. Balcao, R. S. Costa, I. C. A. P. Rocha, E. M. F. C. Ferreira, D. P. M. Torres, et al. 2009. Galactooligosaccharides production during lactose hydrolysis by free Aspergillus oryzae ${\beta}$-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem. 115: 92-99. https://doi.org/10.1016/j.foodchem.2008.11.068
  22. Neri, D. F. M., V. M. Balcao, F. O. Q. Dourado, J. M. B. Oliveira, L. B. Carvalho Jr., and J. A. Teixeira. 2009. Galactooligosaccharides production by ${\beta}$-galactosidase immobilized onto magnetic polysiloxane-polyaniline particles. React. Funct. Polym. 69: 246-251. https://doi.org/10.1016/j.reactfunctpolym.2009.01.002
  23. Prabhune, A. A., B. S. Rao, A. V. Pundle, and H. SivaRaman. 1992. Immobilization of permeabilized Escherichia coli cells with penicillin acylase activity. Enzyme Microb. Technol. 14: 161-163. https://doi.org/10.1016/0141-0229(92)90176-O
  24. Pocedi ova, K., L. Curda, D. Misu, A. Dryakova, and L. Diblíkova. 2010. Preparation of galacto-oligosaccharides using membrane reactor. J. Food Eng. 99: 479-484. https://doi.org/10.1016/j.jfoodeng.2010.02.001
  25. Rabiu, B. A., A. J. Jay, G. R. Gibson, and R. A. Rastall. 2001. Synthesis and fermentation properties of novel galactooligosaccharides by ${\beta}$-galactosidases from Bifidobacterium species. Appl. Environ. Microbiol. 67: 2526-2530. https://doi.org/10.1128/AEM.67.6.2526-2530.2001
  26. Reithmeier, R. A. F. and P. D. Bragg. 1977. Cross-linking of the proteins in the outer membrane of Escherichia coli. Biochim. Biophys. Acta Biomembranes 466: 245-256. https://doi.org/10.1016/0005-2736(77)90222-X
  27. Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-201.
  28. Sakai, T., H. Tsuji, S. Shibata, K. Hayakawa, and K. Matsumoto. 2008. Repeated-batch production of galactooligosaccharides from lactose at high concentration by using alginate-immobilized cells of Sporobolomyces singularis YIT 10047. J. Gen. Appl. Microbiol. 54: 285-293. https://doi.org/10.2323/jgam.54.285
  29. Yakup, A. and A. Tanr seven. 2007. Immobilization of Pectinex Ultra SP-L to produce galactooligosaccharides. J. Mol. Catal. B Enzym. 45: 73-77. https://doi.org/10.1016/j.molcatb.2006.12.005
  30. Yeon, J.-H. and K.-H. Jung. 2010. Operation of packed-bed immobilized cell reactor featuring active ${\beta}$-galactosidase inclusion body-containing recombinant Escherichia coli cells. Biotechnol. Bioprocess Eng. 15: 822-829. https://doi.org/10.1007/s12257-010-0034-y
  31. Yeon, J.-H. and K.-H. Jung. 2011. Repeated-batch operation of immobilized ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis. J. Microbiol. Biotechnol. 21: 972-978. https://doi.org/10.4014/jmb.1104.04029
  32. Zheng, P., H. Yu, Z. Sun, Y. Ni, W. Zhang, Y. Fan, and Y. Xu. 2006. Production of galacto-oligosaccharides by immobilized recombinant ${\beta}$-galactosidase from Aspergillus candidus. Biotechnol. J. 1: 1464-1470. https://doi.org/10.1002/biot.200600100