DOI QR코드

DOI QR Code

Development of a Chemically Defined Minimal Medium for the Exponential Growth of Leuconostoc mesenteroides ATCC8293

  • Kim, Yu Jin (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Eom, Hyun-Ju (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Seo, Eun-Young (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Lee, Dong Yup (Department of Chemical and Biomolecular Engineering, National University of Singapore) ;
  • Kim, Jeong Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Han, Nam Soo (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University)
  • Received : 2012.05.23
  • Accepted : 2012.07.18
  • Published : 2012.11.28

Abstract

Leuconostoc mesenteroides is a heterofermentative Grampositive bacterium that plays key roles in fermentation of foods such as kimchi, sauerkraut, and milk, leading to the production of various organic acids and aromatic compounds. To study the microbiological and genomic characteristics of L. mesenteroides, we have developed a new chemically defined minimal medium by using the single omission technique. During the exponential cell growth, this species required glutamine, methionine, valine, and nicotinic acid as essential nutrients and 8 amino acids (arginine, cysteine, histidine, leucine, phenylalanine, proline, threonine, and tryptophan), 5 vitamins (ascorbic acid, folic acid, inosine, calcium panthothenate, and thiamine), and others (manganese, magnesium, adenine, uracil, and Tween 80) as supplemental nutrients. This medium is useful to study the metabolic characteristics of L. mesenteroides and to explain its role in food fermentation.

Keywords

References

  1. Chervaux, C., S. D. Ehrlich, and E. Maguin. 2000. Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Environ. Microbiol. 66: 5306-5311. https://doi.org/10.1128/AEM.66.12.5306-5311.2000
  2. De Man, J. C., M. Rogosa, and M. E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  3. Eom, H. J., J. M. Park, M. J. Seo, M. D. Kim, and N. S. Han. 2008. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35: 953-959. https://doi.org/10.1007/s10295-008-0369-y
  4. Eom, H. J., J. S. Moon, S. K. Cho, J. H. Kim, and N. S. Han. 2011. Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi. Plasmid 67: 35-43.
  5. Foucaud, C., A. Francois, and J. Richard. 1997. Development of a chemically defined medium for the growth of Leuconostoc mesenteroides. Appl. Environ. Microbiol. 63: 301-304.
  6. Foucaud, C., D. Hemme, and M. Desmazeaud. 2001. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides. Lett. Appl. Microbiol. 32: 20-25. https://doi.org/10.1046/j.1472-765x.2001.00852.x
  7. Hébert, E. M., R. R. Raya, and G. S. de Giori. 2004. Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Curr. Microbiol. 49: 341-345. https://doi.org/10.1007/s00284-004-4357-9
  8. Hemme, D. and C. Foucaud-Scheunemann. 2004. Leuconostoc characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494. https://doi.org/10.1016/j.idairyj.2003.10.005
  9. Jensen, P. R. and K. Hammer. 1993. Minimal requirements for exponential growth of Lactococcus lactis. Appl. Environ. Microbiol. 59: 4363-4366.
  10. Jin, Q., J. Y. Jung, Y. J. Kim, H. J. Eom, S. Y. Kim, T. J. Kim, and N. S. Han. 2009. Production of L-lactate in Leuconostoc citreum via heterologous expression of L-lactate dehydrogenase gene. J. Biotechnol. 144: 160-164. https://doi.org/10.1016/j.jbiotec.2009.08.012
  11. Kang, H., E. J. Myung, K. S. Ahn, H. J. Eom, N. S. Han, Y. B. Kim, et al. 2009. Induction of Th1 cytokines by Leuconostoc mesenteroides subsp. mesenteroides (KCTC 3100) under Th2-type conditions and the requirement of NF-kappaB and p38/JNK. Cytokine 46: 283-289. https://doi.org/10.1016/j.cyto.2009.02.005
  12. Lee, M. S., S. K. Cho, H. J. Eom, S. Y. Kim, T. J. Kim, and N. S. Han. 2008. Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbiol. Biotechnol. 18: 1141-1145.
  13. Letort, C. and V. Juillard. 2001. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J. Appl. Microbiol. 91: 1023-1029. https://doi.org/10.1046/j.1365-2672.2001.01469.x
  14. Makarova, K., A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin, E. Koonin, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611-15616. https://doi.org/10.1073/pnas.0607117103
  15. Pescuma, M., E. M. Hébert, F. Mozzi, and G. F. Valdez. 2007. Hydrolysis of whey proteins by Lactobacillus acidophilus, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus grown in a chemically defined medium. J. Appl. Microbiol. 103: 1738-1746. https://doi.org/10.1111/j.1365-2672.2007.03404.x
  16. Saguir, F. M. and M. C. de Nadra. 2002. Effect of L-malic and citric acids metabolism on the essential amino acid requirements for Oenococcus oeni growth. J. Appl. Microbiol. 93: 295-301. https://doi.org/10.1046/j.1365-2672.2002.01698.x
  17. Saguir, F. M. and M. C. de Nadra. 2007. Improvement of a chemically defined medium for the sustained growth of Lactobacillus plantarum: Nutritional requirements. Curr. Microbiol. 54: 414-418. https://doi.org/10.1007/s00284-006-0456-0
  18. Seo, D. M., S. Y. Kim, H. J. Eom, and N. S. Han. 2007. Synbiotic synthesis of oligosaccharides during milk fermentation by addition of Leuconostoc starter and sugars. J. Microbiol. Biotechnol. 17: 1758-1764.
  19. Terrade, N. and R. Mira de Orduña. 2009. Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus. Int. J. Food Microbiol. 133: 8-13. https://doi.org/10.1016/j.ijfoodmicro.2009.03.020
  20. Vera Pingitore, E., E. M. Hebert, F. Sesma, and M. E. Nader- Macías. 2009. Influence of vitamins and osmolites on growth and bacteriocin production by Lactobacillus salivarius CRL 1328 in a chemically defined medium. Can. J. Microbiol. 55: 304-310. https://doi.org/10.1139/W08-092
  21. von Weymarn, F. N., K. J. Kiviharju, S. T. Jaaskelainen, and M. S. Leisola. 2003. Scale-up of a new bacterial mannitol production process. Biotechnol. Prog. 19: 815-821. https://doi.org/10.1021/bp025718s

Cited by

  1. Comparative studies of serum-free media and detection techniques for <i>in vitro</i> drug sensitivity assessment of <i>Plasmodium falciparum</i> vol.3, pp.3, 2013, https://doi.org/10.4236/ojcd.2013.33020
  2. Nutritional requirements and media development for Lactococcus lactis IL1403 vol.98, pp.13, 2012, https://doi.org/10.1007/s00253-014-5641-7
  3. Construction of a dextran‐free Leuconostoc citreum mutant by targeted disruption of the dextransucrase gene vol.117, pp.4, 2014, https://doi.org/10.1111/jam.12587
  4. Garlic is a source of major lactic acid bacteria for early-stage fermentation of cabbage-kimchi vol.24, pp.4, 2015, https://doi.org/10.1007/s10068-015-0184-y
  5. Harnessing the landscape of microbial culture media to predict new organism–media pairings vol.6, pp.1, 2012, https://doi.org/10.1038/ncomms9493
  6. Macromolecular and Elemental Composition Analyses of Leuconostoc mesenteroides ATCC 8293 Cultured in a Chemostat vol.27, pp.5, 2012, https://doi.org/10.4014/jmb.1612.12038
  7. Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-16026-9
  8. Development of Cabbage Juice Medium for Industrial Production of Leuconostoc mesenteroides Starter vol.27, pp.12, 2012, https://doi.org/10.4014/jmb.1708.08050
  9. Growth studies of Leuconostoc mesenteroides on corn biomass based substrates vol.80, pp.3, 2018, https://doi.org/10.20914/2310-1202-2018-3-205-211
  10. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.02088
  11. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media vol.10, pp.1, 2012, https://doi.org/10.1038/s41598-020-79904-9