DOI QR코드

DOI QR Code

Mass Spectrometry-Based Metabolite Profiling and Bacterial Diversity Characterization of Korean Traditional Meju During Fermentation

  • Lee, Su Yun (Departments of Bioscience and Biotechnology, KonKuk University) ;
  • Kim, Hyang Yeon (Departments of Bioscience and Biotechnology, KonKuk University) ;
  • Lee, Sarah (Departments of Bioscience and Biotechnology, KonKuk University) ;
  • Lee, Jung Min (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Muthaiya, Maria John (Departments of Bioscience and Biotechnology, KonKuk University) ;
  • Kim, Beom Seok (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Oh, Ji Young (Food Research Institute, CJ CheilJedang Corporation) ;
  • Song, Chi Kwang (Food Research Institute, CJ CheilJedang Corporation) ;
  • Jeon, Eun Jung (Food Research Institute, CJ CheilJedang Corporation) ;
  • Ryu, Hyung Seok (Food Research Institute, CJ CheilJedang Corporation) ;
  • Lee, Choong Hwan (Departments of Bioscience and Biotechnology, KonKuk University)
  • Received : 2012.07.04
  • Accepted : 2012.07.20
  • Published : 2012.11.28

Abstract

The metabolite profile of meju during fermentation was analyzed using mass spectrometry techniques, including GC-MS and LC-MS, and the bacterial diversity was characterized. The relative proportions of bacterial strains indicated that lactic acid bacteria, such as Enterococcus faecium and Leuconostoc lactis, were the dominant species. In partial least-squares discriminate analysis (PLS-DA), the componential changes, which depended on fermentation, proceeded gradually in both the GC-MS and LC-MS data sets. During fermentation, lactic acid, amino acids, monosaccharides, sugar alcohols, and isoflavonoid aglycones (daidzein and genistein) increased, whereas citric acid, glucosides, and disaccharides decreased. MS-based metabolite profiling and bacterial diversity characterization of meju demonstrated the changes in metabolites according to the fermentation period and provided a better understanding of the correlation between metabolites and bacterial diversity.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Sch ffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Arbona, V., D. J. Iglesias, M. Talon, and A. G. Cadenas. 2009. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J. Agric. Food Chem. 57: 7338-7347. https://doi.org/10.1021/jf9009137
  3. Baek, J. G., S. M. Shim, D. Y. Kwon, H. K. Choi, C. H. Lee, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Biosci. Biotechnol. Biochem. 74: 1860-1868. https://doi.org/10.1271/bbb.100269
  4. Cha, M. H. and J. F. Park. 2001. Isolation and characterization of the strain producing angiotensin converting enzyme inhibitor from soy sauce. J. Korean Soc. Food Sci. Nutr. 30: 594-599.
  5. Cho, D. H. and W. J. Lee. 1970. Microbiological studies of Korean native soy sauce fermentation. J. Korean Agric. Chem. Soc. 13: 35-42.
  6. Choi, K. S., H. C. Chung, J. D. Choi, K. I. Kwon, M. H. Im, Y. J. Kim, and J. S. Seo. 1999. Effects of meju manufacturing periods on the fermentation characteristics of kanjang, Korean traditional soy sauce. J. Korean Soc. Agric. Chem. Biotechnol. 42: 277-282.
  7. Dettmer, K., P. A. Aronov, and B. D. Hammock. 2007. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26: 51-78. https://doi.org/10.1002/mas.20108
  8. Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean. J. Food Eng. 56: 249-254. https://doi.org/10.1016/S0260-8774(02)00262-5
  9. Farag, M. A., D. V. Huhman, Z. Lei, and L. W. Sumner. 2007. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68: 342-354. https://doi.org/10.1016/j.phytochem.2006.10.023
  10. Goodacre, R., S. Vaidyanathan, W. B. Dunn, G. G. Harrigan, and D. B. Kell. 2004. Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 22: 245-252. https://doi.org/10.1016/j.tibtech.2004.03.007
  11. Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, et al. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699.
  12. John, R. P., G. S. Anisha, K. M. Nampoothiria, and A. Pandeya. 2009. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145-152.
  13. Jung, K. O., S. Y. Park, and K. Y. Park. 2006. Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition 22: 539-545. https://doi.org/10.1016/j.nut.2005.11.007
  14. Kaneuchi, C., M. Seki, and K. Komagata. 1988. Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl. Environ. Microbiol. 54: 3053-3056.
  15. Kang, H. J., H. J. Yang, M. J. Kim, E. S. Han, H. J. Kim, and D. Y. Kwon. 2011. Metabolomic analysis of meju during fermentation by ultra performance liquid chromatographyquadrupoletime of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem. 127: 1056-1064. https://doi.org/10.1016/j.foodchem.2011.01.080
  16. Kawamura, S., K. Nagao, and T. Kasai. 1977. Determination of free monosaccharides and detection of sugar alcohols in mature soybean seeds. J. Nutr. Sci. Vitaminol. 23: 249-255. https://doi.org/10.3177/jnsv.23.249
  17. Kim, A. J., J. N. Choi, S. B. Park, S. H. Yeo, J. H. Choi, and C. H. Lee. 2010. GC-MS based metabolite profiling of rice koji fermentation by various fungi. Biosci. Biotechnol. Biochem. 74: 2267-2272. https://doi.org/10.1271/bbb.100488
  18. Kim, J. Y., J. N. Choi, D. J. Kang, G. H. Son, Y. S. Kim, H. K. Choi, et al. 2011. Correlation between antioxidative activities and metabolite changes during cheonggukjang fermentation. Biosci. Biotechnol. Biochem. 75: 732-739. https://doi.org/10.1271/bbb.100858
  19. Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  20. Kim, Y. S., M. C. Kim, S. W. Kwon, S. J. Kim, I. C. Park, J. O. Ka, and H. Y. Weon. 2011. Analyses of bacterial communities in Meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49: 340-348. https://doi.org/10.1007/s12275-011-0302-3
  21. Knapp, D. R. 1979. Handbook of Analytical Derivatization Reactions, pp. 2-6. John Wiley and Sons, New York.
  22. Ko, B. K., H. J. Ahn, F. Van den berg, C. H. Lee, and Y. S. Hong. 2009. Metabolomic insight into soy sauce through 1H NMR spectroscopy. J. Agric. Food Chem. 57: 6862-6870. https://doi.org/10.1021/jf901454j
  23. Kwon, D. Y., J. W. Daily III, and H. J. Kim. 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 30: 1-13. https://doi.org/10.1016/j.nutres.2009.11.004
  24. Lee, J. H., T. W. Kim, H. Lee, and H. C. Chang. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394. https://doi.org/10.1111/j.1472-765X.2010.02906.x
  25. Metsa-Ketela, M., L. Halo, E. Munukka, J. Hakala, P. Mantsala, and K. Ylihonko. 2002. Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl. Environ. Microbiol. 68: 4472-4479. https://doi.org/10.1128/AEM.68.9.4472-4479.2002
  26. Mital, B. K. and K. H. Steinkraus. 1975. Utilization of oligosaccharides by lactic-acid bacteria during fermentation of soymilk. J. Food Sci. 40:114-118. https://doi.org/10.1111/j.1365-2621.1975.tb03749.x
  27. Nam, Y. D., S. Y. Lee, and S. I. Lim. 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155: 36-42. https://doi.org/10.1016/j.ijfoodmicro.2012.01.013
  28. Namgung, H. J., H. J. Park, I. H. Cho, H. K. Choi, D. Y. Kwon, S. M. Shim, and Y. S. Kim. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agric. 90: 1926-1935.
  29. Oude Elferink, S. J., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber, and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67: 125-132. https://doi.org/10.1128/AEM.67.1.125-132.2001
  30. Park, K. Y., K. O. Jung, S. H. Rhee, and Y. H. Choi. 2003. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mut. Res. 523-524: 43-53.
  31. Park, M. K., I. H. Cho, S. Lee, H. K. Choi, D. Y. Kwon, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, during fermentation by gas chromatographymass spectrometry and principal component analysis. Food Chem. 122: 1313-1319. https://doi.org/10.1016/j.foodchem.2010.03.095
  32. Pyo, Y. E., T. C. Lee, and Y. C. Lee. 2005. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: 215-220.
  33. Rodriguez Sanoja, R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus alpha-amylase and role of the C-terminal direct repeats in rawstarch binding. Appl. Environ. Microbiol. 66: 3350-3356. https://doi.org/10.1128/AEM.66.8.3350-3356.2000
  34. Rostagno, M. A., A. Villares, E. Guillamon, A. Garcia-Lafuente, and J. A. Martinez. 2009. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 1216: 2-29. https://doi.org/10.1016/j.chroma.2008.11.035
  35. Shibata, K., D. M. Flores, G. Kobayashi, and K. Sonomotoa. 2007. Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microb. Technol. 41: 149-155. https://doi.org/10.1016/j.enzmictec.2006.12.020
  36. Shin, Z. I., R. Yu, S. A. Park, D. K. Chung, C. W. Ahn, H. S. Nam, et al. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. Agric. Food Chem. 49: 3004-3009. https://doi.org/10.1021/jf001135r
  37. Solms, J. 1969. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17: 686-688. https://doi.org/10.1021/jf60164a016
  38. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  39. Yang, H. J. and S. Park, V. Pak, K. R. Chung, and D. Y. Kwon. 2011. Fermented soybean products and their bioactive compounds, pp 21-49. H. El-Shemy (ed.). Soybean and Health, InTech.

Cited by

  1. Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food vol.24, pp.5, 2014, https://doi.org/10.4014/jmb.1401.01009
  2. Metabolite Profiling of Red and White Pitayas (Hylocereus polyrhizus and Hylocereus undatus) for Comparing Betalain Biosynthesis and Antioxidant Activity vol.62, pp.34, 2012, https://doi.org/10.1021/jf5020704
  3. Hypolipidemic and antiinflammation activities of fermented soybean fibers from meju in C57BL/6 J mice vol.28, pp.9, 2012, https://doi.org/10.1002/ptr.5134
  4. Unraveling the Functions of the Macroalgal Microbiome vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.01488
  5. Comparison of Traditional and Commercial Vinegars Based on Metabolite Profiling and Antioxidant Activity vol.25, pp.2, 2012, https://doi.org/10.4014/jmb.1408.08021
  6. Spectroscopic determination of metabolic and mineral changes of soya-chunk mediated by Aspergillus sojae vol.170, pp.None, 2012, https://doi.org/10.1016/j.foodchem.2014.08.029
  7. Metabolic Effects of the pksCT Gene on Monascus aurantiacus Li As3.4384 Using Gas Chromatography–Time-of-Flight Mass Spectrometry-Based Metabolomics vol.64, pp.7, 2012, https://doi.org/10.1021/acs.jafc.5b06082
  8. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions vol.211, pp.None, 2012, https://doi.org/10.1016/j.foodchem.2016.05.055
  9. Correlation of Volatile Compounds and Sensory Attributes of Chinese Traditional Sweet Fermented Flour Pastes Using Hierarchical Cluster Analysis and Partial Least Squares-Discriminant Analysis vol.2017, pp.None, 2012, https://doi.org/10.1155/2017/3213492
  10. Comparison of physicochemical properties and antioxidant activities of fermented soybean-based red pepper paste, Gochujang, prepared with five different red pepper (Capsicum annuum L.) varieties vol.55, pp.2, 2012, https://doi.org/10.1007/s13197-017-2992-y
  11. Comprehensive Metabolite Profiling and Microbial Communities of Doenjang (Fermented Soy Paste) and Ganjang (Fermented Soy Sauce): A Comparative Study vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030641
  12. Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp. vol.31, pp.3, 2012, https://doi.org/10.4014/jmb.2012.12051
  13. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review vol.56, pp.4, 2021, https://doi.org/10.1111/ijfs.14794