DOI QR코드

DOI QR Code

Isolation and Characterization of an Agarase-Producing Bacterial Strain, Alteromonas sp. GNUM-1, from the West Sea, Korea

  • Kim, Jonghee (Department of Food and Nutrition, Seoil University) ;
  • Hong, Soon-Kwang (Division of Bioscience and Bioinformatics, Myongji University)
  • Received : 2012.09.03
  • Accepted : 2012.09.08
  • Published : 2012.12.28

Abstract

The agar-degrading bacterium GNUM-1 was isolated from the brown algal species Sargassum serratifolium, which was obtained from the West Sea of Korea, by using the selective artificial seawater agar plate. The cells were Gram-negative, $0.5-0.6{\mu}m$ wide and $2.0-2.5{\mu}m$ long curved rods with a single polar flagellum, forming nonpigmented, circular, smooth colonies. Cells grew at $20^{\circ}C-37^{\circ}C$, between pH 5.0 and 9.0, and at 1-10% (w/v) NaCl. The DNA G+C content of the GNUM-1 strain was 45.5 mol%. The 16S rRNA sequence of the GNUM-1 was very similar to those of Alteromonas stellipolaris LMG 21861 (99.86% sequence homology) and Alteromonas addita $R10SW13^T$(99.64% sequence homology), which led us to assign it to the genus Alteromonas. It showed positive activities for agarase, amylase, gelatinase, alkaline phosphatase, esterase (C8), lipase (C14), leucine arylamidase, valine arylamidase, ${\alpha}$-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\beta}$-glucosidase, catalase, and urease. It can utilize citrate, malic acid, and trisodium citrate. The major fatty acids were summed feature 3 (21.5%, comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH) and C16:0 (15.04%). On the basis of the variations in many biochemical characteristics, GNUM-1 was considered as unique and thus was named Alteromonas sp. GNUM-1. It produced the highest agarase activity in modified ASW medium containing 0.4% sucrose, but lower activity in rich media despite superior growth, implying that agarase production is tightly regulated and repressed in a rich nutrient condition. The 30 kDa protein with agarase activity was identified by zymography, and this report serves as the very first account of such a protein in the genus Alteromonas.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, A. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein data base. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Araki, C. H. 1937. Acetylation of agar like substance of Gelidium amansii. J. Chem. Soc. 58: 1338-1350.
  3. Chen, Y. G., H. D. Xiao, S. K. Tang, Y. Q. Zhang, E. Borrathybay, X. L. Cui, et al. 2009. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek 96: 259-366. https://doi.org/10.1007/s10482-009-9341-8
  4. Chi, W. J., D. Y. Park, S. C. Jeong, Y. K. Chang, and S. K. Hong. 2011. Isolation and characterization of starch-hydrolyzing Pseudoalteromonas sp. A-3 from the coastal sea water of Daecheon, Republic of Korea. Kor. J. Microbiol. Biotechnol. 39: 317-323.
  5. Chi, W. J., Y. K. Chang, and S. K. Hong. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  6. Chiu, H. H., W. Y. Shieh, S. Y. Lin, C. M. Tseng, P. W. Chiang, and I. Wagner-Dobler. 2007. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int. J. Syst. Evol. Microbiol. 57: 1209-1216. https://doi.org/10.1099/ijs.0.64762-0
  7. Chun, J. S., J. H. Lee, Y. Y. Jung, M. J. Kim, S. I. Kim, B. K. Kim, and Y. W. Lim. 2007. Extaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  8. Duckworth, M. and W. Yaphe. 1971. Structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  9. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seatle, USA.
  10. Flament, D., T. Barbeyron, M. Jam, P. Potin, M. Czjzek, B. Kloareg, and G. Michel. 2007. Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Appl. Environ. Microbiol. 73: 4691-4694. https://doi.org/10.1128/AEM.00496-07
  11. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  12. Ivanova, E. P., J. P. Bowman, A. M. Lysenko, N. V. Zhukova, N. M. Gorshkova, A. F. Sergeev, and V. V. Mikhailov. 2005. Alteromonas addita sp. nov. Int. J. Syst. Evol. Microbiol. 55: 1065-1068. https://doi.org/10.1099/ijs.0.63521-0
  13. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge Univesity Press, UK.
  14. Kirimura, K., N. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, and S. Usai. 1999. Purification and characterization of a novel ${\beta}$-agarase from an alkalophilic bacterium, Altermonas sp. E-1. J. Biosci. Bioeng. 87: 436-441. https://doi.org/10.1016/S1389-1723(99)80091-7
  15. Kluge, A. G and F. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
  16. Komagata, K. and K. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207.
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Leon, O., L. Quintana, G. Peruzzzo, and J. C. Slebe. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58: 4060-4063.
  19. Martinez-Checa, F., W. Bejar, I. Llamas, A. del Moral, and E. Quesda. 2005. Alteromonas hispanica sp. nov., a polyunsaturatedfatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 2385-2390. https://doi.org/10.1099/ijs.0.63809-0
  20. McCandless, E. 1981. Polysaccharides of the seaweeds, pp. 559-588. In C. Lobban and M. Wynne (eds.). The Biology of Seaweeds. University of California Press, Berkeley, USA.
  21. Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  22. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  23. Moaledj, K. 1986. Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: Their application to numerical taxonomy. J. Microbiol. Methods 5: 303-310. https://doi.org/10.1016/0167-7012(86)90056-4
  24. Morrice, L. M., M. W. McLean, F. B. Williamson, and W. F. Long. 1983. Beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties. Eur. J. Biochem. 135: 553-558. https://doi.org/10.1111/j.1432-1033.1983.tb07688.x
  25. Potin, P., C. Richard, C. Rochas, and B. Kloareg. 1993. Purification and characterization of the ${\alpha}$-agarase from Alteromonas agaralyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214: 599-607. https://doi.org/10.1111/j.1432-1033.1993.tb17959.x
  26. Pukall, R., O. Paeuker, D. Buntefuss, G. Ulrichs, P. Lebaron, L. Bernard, et al. 1999. High sequence diversity of Alteromonas macleodii-related cloned and cellular 16s rDNAs from a Mediterranean seawater mesocosm experiment. FEMS Microbiol. Ecol. 28: 335-344. https://doi.org/10.1111/j.1574-6941.1999.tb00588.x
  27. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  28. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE.
  29. Servin-Gonzalez, L., M. R. Jensen, J. White, and M. Bibb. 1994. Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Microbiology 140: 2555-2565. https://doi.org/10.1099/00221287-140-10-2555
  30. Temuuji, U., W. J. Chi, S. Y. Lee, Y. K. Chang, and S. K. Hong. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): An endo-type ${\beta}$-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
  31. Temuujin, U., W. J. Chi, Y. K. Chang, and S. K. Hong. 2011. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type ${\beta}$-agarase-producing neoagarobiose. J. Bacteriol. 194: 142-149.
  32. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  33. Van der Meulen, H. J. and W. Harder. 1975. Production and characterization of the agarase of Cytophaga flevensis. Antonie Van Leeuwenhoek 41: 431-447. https://doi.org/10.1007/BF02565087
  34. Van Trappen, S., T. L. Tan, J. Yang, J. Mergaert, and J. Swings. 2004. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163. https://doi.org/10.1099/ijs.0.02862-0
  35. Vandecandelaere, I., O. Nercessian, E. Segaert, W. Achouak, A. Mollica, M. Faimali, et al. 2008. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (approved lists 1980). Int. J. Syst. Evol. Microbiol. 58: 2589-2596. https://doi.org/10.1099/ijs.0.65691-0
  36. Vera, J., R. Alvarez, E. Murano, J. C. Slebe, and O. Leo. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4383.
  37. Wang, J., H. Mou, X. Jiang, and H. Guan. 2006. Characterization of a novel beta-agarase from marine Altermonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839. https://doi.org/10.1007/s00253-005-0207-3
  38. Yoon, J. H., I. G. Kim, K. H. Kang, T. K. Oh, and Y. H. Park. 2003. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 53: 1625-1630. https://doi.org/10.1099/ijs.0.02536-0
  39. Yoon, J. H., S. H. Yeo, T. K. Oh, and Y. H. Park. 2004. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 54: 1197-1201. https://doi.org/10.1099/ijs.0.63079-0
  40. Zhong, Z., A. Toukdarian, D. Helinski, V. Knauf, S. Sykes, J. E. Wilkinson, et al. 2001. Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Appl. Environ. Microbiol. 67: 5771-5779. https://doi.org/10.1128/AEM.67.12.5771-5779.2001

Cited by

  1. Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea vol.23, pp.11, 2012, https://doi.org/10.4014/jmb.1308.08007
  2. Production and Characterization of a Novel Thermostable Extracellular Agarase from Pseudoalteromonas hodoensis Newly Isolated from the West Sea of South Korea vol.173, pp.7, 2014, https://doi.org/10.1007/s12010-014-0958-3
  3. Marine enzymes and food industry: insight on existing and potential interactions vol.1, pp.None, 2012, https://doi.org/10.3389/fmars.2014.00046
  4. Isolation and Characterization of an Agaro-Oligosaccharide (AO)-Hydrolyzing Bacterium from the Gut Microflora of Chinese Individuals vol.9, pp.3, 2012, https://doi.org/10.1371/journal.pone.0091106
  5. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications vol.98, pp.7, 2014, https://doi.org/10.1007/s00253-014-5557-2
  6. Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1 vol.98, pp.10, 2012, https://doi.org/10.1007/s00253-014-5510-4
  7. Isolation and Characterization of Agar-Degrading Endophytic Bacteria from Plants vol.70, pp.2, 2012, https://doi.org/10.1007/s00284-014-0713-6
  8. Characterization of an Alkaline Family I.4 Lipase from Bacillus sp. W130-35 Isolated from a Tidal Mud Flat with Broad Substrate Specificity vol.25, pp.12, 2012, https://doi.org/10.4014/jmb.1507.07104
  9. Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사 vol.31, pp.2, 2016, https://doi.org/10.7841/ksbbj.2016.31.2.113
  10. Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-l-galactosidase, Ahg786, from Gayadomonas joobiniege G7 vol.102, pp.20, 2018, https://doi.org/10.1007/s00253-018-9277-x
  11. Crystal structure of a neoagarobiose-producing GH16 family β-agarase from Persicobacter sp. CCB-QB2 vol.104, pp.2, 2012, https://doi.org/10.1007/s00253-019-10237-y
  12. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest vol.18, pp.2, 2012, https://doi.org/10.3390/md18020091