DOI QR코드

DOI QR Code

Identification of 5-Hydroxy-3,6,7,8,3',4'-Hexamethoxyflavone from Hizikia fusiforme Involved in the Induction of the Apoptosis Mediators in Human AGS Carcinoma Cells

  • Kim, Min Jeong (Department of Biotechnology, Dong-A University) ;
  • Lee, Hye Hyeon (Department of Biotechnology, Dong-A University) ;
  • Seo, Min Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kang, Byoung Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Park, Jeong Uck (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Kyoung-Sook (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Gi-Young (Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University) ;
  • Joo, Woo Hong (Department of Biology, Changwon National University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Oriental Medicine, Dong-Eui University) ;
  • Cho, Young-Su (Department of Biotechnology, Dong-A University) ;
  • Jeong, Yong Kee (Department of Biotechnology, Dong-A University)
  • Received : 2012.08.10
  • Accepted : 2012.09.18
  • Published : 2012.12.28

Abstract

An 80% ethanol extract of Hizikia fusiforme was obtained and followed by successive fractionation using the organic solvents n-hexane, ethyl acetate, and n-butanol to identify the antioxidative substance. The aqueous part of the nbutanol fractionation step, showing high antioxidative activity, was subjected to reverse-phase liquid chromatography. As a result, a substance purified from a BB-2 fraction showed high antioxidative activity. The m/z 419 [M+H] molecular ion peak in the fraction was observed by the analysis of the ESI-LC/MS spectrum. By the analysis of 1H NMR (500 MHz, DMSO-$d_6$) and $^{13}C$ NMR (125 MHz, DMSO-$d_6$) spectra, a unique compound of the fraction was biochemically identified as a 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5HHMF). We also investigated the effect of 5HHMF on human gastric AGS carcinoma cells. Western blot analysis suggested that the flavone substantially increased the levels of the death receptor-associated apoptosis mediators Fas, Fas L, FADD, TRADD, and DR4 in a concentration-dependent manner. The levels of Fas, Fas L, TRADD, and DR4 in the cells treated with 5HHMF ($5{\mu}g/ml$) were approximately 26.4-, 12.8-, 6.7-, and 9.8-times higher than those of non-treated cells, respectively. Of note, the level of FADD protein in the cells exposed to 5HHMF ($1{\mu}g/ml$) increased approximately 9.6-times. In addition, the cleavage of caspase-3, -8, and -9 in cultured AGS cells treated with 5HHMF was significantly confirmed. Therefore, our results suggest that 5HHMF from H. fusiforme is involved in the induction of death receptor-associated apoptosis mediators in human gastric AGS carcinoma cells.

Keywords

References

  1. Ananthi, S., H. Rao, B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan, and H. R. Vasanthi. 2010. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (marine brown alga). Food Chem. Toxicol. 48: 187-192. https://doi.org/10.1016/j.fct.2009.09.036
  2. Ashkenazi, A. and V. M. Dixit. 1998. Death receptors: Signaling and modulation. Science 281: 1305-1308. https://doi.org/10.1126/science.281.5381.1305
  3. Baker, S. J. and E. P. Reddy. 1996. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12: 1-9.
  4. Boldin, M. P., I. L. Mett, E. E. Varfolomeev, I. Chumakov, Y. Shemer-Avni, J. H. Camonis, and D. Wallach. 1995. Selfassociation of the "death domains" of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J. Biol. Chem. 270: 387-391. https://doi.org/10.1074/jbc.270.1.387
  5. Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity, LWT. Food Sci. Technol. 28: 25-30.
  6. Cathcart, R., E. Schwiers, and B. N. Ames. 1983. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem. 134: 111-116. https://doi.org/10.1016/0003-2697(83)90270-1
  7. Chinnaiyan, A. M., K. O'Rourke, M. Tewari, and V. M. Dixit. 1995. FADD, a novel death domain-containing protein, interacts with the tor for TRAIL. Science 277: 815-818.
  8. Coskun, O., M. Kanter, A. Korkmaz, and S. Oter. 2005. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res. 51: 117-123. https://doi.org/10.1016/j.phrs.2004.06.002
  9. Cleveland, J. L. and J. N. Ihle. 1995. Contenders in FasL/TNF death signaling. Cell 81: 479-482. https://doi.org/10.1016/0092-8674(95)90068-3
  10. De Laurenzi, V. and G. Melino. 2000. Apoptosis. The little devil of death. Nature 406: 135-136. https://doi.org/10.1038/35018190
  11. Fiers, W., R. Beyaert, W. Declercq, and P. Vandenabeele. 1999. More than one way to die: Apoptosis, necrosis and reactive oxygen damage. Oncogene 18: 7719-7730.
  12. Fleury, C., B. Mignotte, and J. L. Vayssiere. 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84: 131-141. https://doi.org/10.1016/S0300-9084(02)01369-X
  13. Gruss, H. J. and S. K. Dower. 1995. Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas. Blood 85: 3378-3404.
  14. Halliwell, B. 1994. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 344: 721-724. https://doi.org/10.1016/S0140-6736(94)92211-X
  15. Hsu, H., J. Xiong, and D. V. Goeddel. 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation. Cell 81: 495-504. https://doi.org/10.1016/0092-8674(95)90070-5
  16. Kim, T. Y., C. Y. Jin, G. Y. Kim, I. W. Choi, Y. K. Jeong, T. J. Nam, et al. 2009. Ethyl alcohol extracts of Hizikia fusiforme sensitize AGS human gastric adenocarcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis. J. Med. Food 12: 782-787. https://doi.org/10.1089/jmf.2008.1114
  17. Kim, K. I., H. D. Seo, H. S. Lee, H. Y. Cho, and H. C. Yang. 1998. Studies on the blood anticoagulant polysaccharide isolated from hot water extracts of Hizikia fusiformis. Kor. J. Food Sci. Nutr. 27: 1204-1210.
  18. Kischkel, F. C., D. A. Lawrence, A. Chuntharapai, P. Schow, K. J. Kim, and A. Ashkenazi. 2000. TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12: 611-620. https://doi.org/10.1016/S1074-7613(00)80212-5
  19. Li, S., C.-Y. Lo, and C.-T. Ho. 2006. Hydroxylated Polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J. Agric. Food Chem. 54: 4176-4185. https://doi.org/10.1021/jf060234n
  20. Moon, B., Y. Lee, C. Shin, and Y. Lim. 2005. Complete assignments of the 1H and 13C NMR data of flavone derivatives. Bull. Kor. Chem. Soc. 26: 603. https://doi.org/10.5012/bkcs.2005.26.4.603
  21. Pan, M.-H., Y.-S. Lai, C.-S. Lai, Y.-J. Wang, S. Li, C.-Y. Lo, et al. 2007. 5-Hydroxy-3,6,7,8,3',4'-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells. J. Agric. Food Chem. 55: 5081-5091. https://doi.org/10.1021/jf070068z
  22. Qiu, P., H. Guan, P. Dong, S. Guo, J. Zheng, S. Li, et al. 2011. The inhibitory effects of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone on human colon cancer cells. Mol. Nutr. Food Res. 55: 1523- 1532. https://doi.org/10.1002/mnfr.201100070
  23. Rupérez, P., O. Ahrazem, and J. A. Leal. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50: 840-845. https://doi.org/10.1021/jf010908o
  24. Santoso, J., Y. Yoshie, and T. Suzuki. 2002. The distribution and profile of nutrients and catechins of some Indonesian seaweeds. Fish. Sci. 68(Suppl): 1647-1648.
  25. Schulze-Osthoff, K., M. K. Bauer, M. Vogt, and S. Wesselborg. 1997. Oxidative stress and signal transduction. Int. J. Vitam. Nutr. Res. 67: 336-342.
  26. Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
  27. Smith, C. A., T. Farrah, and R.G. Goodwin. 1994. The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 76: 959-962. https://doi.org/10.1016/0092-8674(94)90372-7
  28. Stanger, B. Z., P. Leder, T. H. Lee, E. Kim, and B. Seed. 1995. RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513-523. https://doi.org/10.1016/0092-8674(95)90072-1
  29. Tartaglia, L. A. and D. V. Goeddel. 1992. Two TNF receptors. Immunol. Today 13: 151-153. https://doi.org/10.1016/0167-5699(92)90116-O
  30. Wang, S. and W. S. EI-Deiry. 2003. TRAIL and apoptosis induction by TNF family death receptors. Oncogene 22: 8628-8633. https://doi.org/10.1038/sj.onc.1207232
  31. Yan, X., Y. Chuda, M. Suzuki, and T. Nagata. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 63: 605-607. https://doi.org/10.1271/bbb.63.605
  32. Yu, L., S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian. 2002. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 13: 1619-1624.
  33. Zhishen, J., T. Mengcheng, and W. Jianming. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Cited by

  1. 톳 열수 추출물이 마우스 비장세포 증식증과 염증성 사이토카인 (IL-1β, IL-6, TNF-α) 분비에 미치는 영향 vol.42, pp.12, 2012, https://doi.org/10.3746/jkfn.2013.42.12.1924
  2. Anti-inflammatory effects of 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone via NF-κB inactivation in lipopolysaccharide-stimulated RAW 264.7 macrophage vol.9, pp.4, 2012, https://doi.org/10.3892/mmr.2014.1922
  3. New flavonoids from bioactive extract of Algerian medicinal plant Launeae arborescens vol.4, pp.4, 2012, https://doi.org/10.12980/apjtb.4.2014c708
  4. Methoxyflavones from Marcetia taxifolia as HIV-1 Reverse Transcriptase Inhibitors vol.12, pp.11, 2012, https://doi.org/10.1177/1934578x1701201104