DOI QR코드

DOI QR Code

Isolation and Characterization of a Xylanolytic Bacterium, Bacillus sp. MX47

Xylanase 생산균 Bacillus sp. MX47의 분리 및 동정

  • Chi, Won-Jae (Department of Biological Science, Myongji University) ;
  • Park, Da Yeon (Department of Biological Science, Myongji University) ;
  • Park, Jae-Seon (Department of Biological Science, Myongji University) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • 지원재 (명지대학교 생명과학정보학부) ;
  • 박다연 (명지대학교 생명과학정보학부) ;
  • 박재선 (명지대학교 생명과학정보학부) ;
  • 홍순광 (명지대학교 생명과학정보학부)
  • Received : 2012.07.31
  • Accepted : 2012.10.04
  • Published : 2012.12.28

Abstract

A xylanolytic bacterial strain, MX47, was isolated from rotting plant matter in soil. The strain was aerobic and gram positive, and grew between pH 6.0 and 11.0. Cells were susceptible to thiostrepton and chloramphenicol. The major fatty acids (>3%) comprised 64.55% of iso-$C_{15:0}$, 22.76% of anteiso-$C_{15:0}$, and 3.92% of iso-$C_{17:0}$. The G/C content of the DNA was 44.15 mol%. The predominant respiratory quinone was menaquinone 7 (MK-7). Searches for 16S rRNA gene sequence similarity as well as phylogenetic analyses strongly suggested that the strain should be classified to the genus Bacillus. However, its biochemical characteristics, including acid production and enzyme activities, are different from those of other Bacillus strains in the same clade, and therefore, we propose the name Bacillus sp. MX47.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, A. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein data base. Nucleic Acids Res. 17: 3389-3402.
  2. Chi, W.-J., D. Y. Park, Y.-K. Chang, and S.-K. Hong.. 2012. A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: production, purification and characterization. Appl Biochem Biotechnol. DOI 10.1007/ s12010-012-9828-z.
  3. Chun, J., J. H. Lee, Y. Y. Jung, M. J. Kim, S. I. Kim, B. K. Kim, and Y. W. Lim. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259- 2261. https://doi.org/10.1099/ijs.0.64915-0
  4. Collins, T., C. Gerday, G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  5. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seatle, USA.
  6. Galkiewicz, J. P. and C. A. Kellogg. 2008. Cross-kingdom amplification using bacteria-specific primers: complicationsfor studies of coral microbial ecology. Appl. Environ. Microbiol. 74: 7828-7831. https://doi.org/10.1128/AEM.01303-08
  7. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.
  8. Joo, J. C., S. P. Pack, Y. H. Kim, and Y. J. Yoo. 2011. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J. Biotechnol. 151: 56-65. https://doi.org/10.1016/j.jbiotec.2010.10.002
  9. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.
  10. Knight, B. C. and H. Proom. 1950. A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus. J. Gen. Microbiol. 4: 508-538. https://doi.org/10.1099/00221287-4-3-508
  11. Komagata, K. and K. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207
  12. Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  13. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  14. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.
  15. Satomi, M., M. T. La Duc, and K. Venkateswaran. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Microbiol. 56: 1735-1740. https://doi.org/10.1099/ijs.0.64189-0
  16. Shivaji, S., P. Chaturvedi, K. Suresh, G. S. N. Reddy, C. B. S. Dutt, M. Wainwright, J. V. Narlikar, and P. M. Bhargava. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol. 56: 1465-1473. https://doi.org/10.1099/ijs.0.64029-0
  17. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
  18. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  19. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305-317.

Cited by

  1. 용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-${\beta}$-1,4-xylanase 생산 증가를 위한 배지최적화 vol.41, pp.3, 2012, https://doi.org/10.4014/kjmb.1304.04001
  2. 대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성 vol.48, pp.2, 2012, https://doi.org/10.4014/mbl.2001.01009