DOI QR코드

DOI QR Code

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Jung, Yeonsu (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Hwan Chul (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Ku, Bon-Cheol (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2012.08.31
  • Accepted : 2012.09.21
  • Published : 2012.10.31

Abstract

Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.

Keywords

References

  1. Yamamoto T, Watanabe K, Hernandez E. Mechanical properties, thermal stability and heat transport in carbon nanotubes. In: Yamamoto T, Watanabe K, Hernandez E, eds. Carbon nanotubes. Topics in Applied Physics, Vol. 111, Springer, Berlin Heidelberg, 165 (2008). http://dx.doi.org/10.1007/978-3-540-72865-8_5.
  2. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi. org/10.1038/386474a0.
  3. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi. org/10.1063/1.127079.
  4. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes- -the route toward applications. Science, 297, 787 (2002). http:// dx.doi.org/10.1126/science.1060928.
  5. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi. org/10.1126/science.287.5453.637.
  6. Frank S, Poncharal P, Wang ZL, de Heer WA. Carbon nanotube quantum resistors. Science, 280, 1744 (1998). http://dx.doi.org/ 10.1126/science.280.5370.1744.
  7. Hone J, Whitney M, Zettl A. Thermal conductivity of singlewalled carbon nanotubes. Synth Met, 103, 2498 (1999). http:// dx.doi.org/10.1016/s0379-6779(98)01070-4.
  8. Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 84, 4613 (2000). http:// dx.doi.org/10.1103/PhysRevLett.84.4613.
  9. Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 19, 3358 (2007). http://dx.doi.org/10.1002/ adma.200602966.
  10. Zhang X, Li Q, Holesinger TG, Arendt PN, Huang J, Kirven PD, Clapp TG, DePaula RF, Liao X, Zhao Y, Zheng L, Peterson DE, Zhu Y. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater, 19, 4198 (2007). http://dx.doi.org/10.1002/ adma.200700776.
  11. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 290, 1331 (2000). http://dx.doi. org/10.1126/science.290.5495.1331.
  12. Vigolo B, Poulin P, Lucas M, Launois P, Bernier P. Improved structure and properties of single-wall carbon nanotube spun fibers. Appl Phys Lett, 81, 1210 (2002). http://dx.doi.org/10.1063/1.1497706.
  13. Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang W-F, Hauge RH, Fischer JE, Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 305, 1447 (2004). http://dx.doi.org/10.1126/science. 1101398.
  14. Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306, 1358 (2004). http://dx.doi.org/10.1126/science.1104276.
  15. Kai L, Yinghui S, Ruifeng Z, Hanyu Z, Jiaping W, Liang L, Shoushan F, Kaili J. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 21, 045708 (2010). http://dx.doi.org/10.1088/0957-4484/21/ 4/045708.
  16. Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 304, 276 (2004). http://dx.doi.org/10.1126/science.1094982.
  17. Motta M, Moisala A, Kinloch IA, Windle AH. High performance fibres from 'dog bone' carbon nanotubes. Adv Mater, 19, 3721 (2007). http://dx.doi.org/10.1002/adma.200700516.
  18. Schutzenberger P, Schutzenberger L. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences. Acad Sci Paris, 111, 774 (1890).
  19. Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 32, 335 (1976). http://dx.doi.org/10.1016/0022-0248(76)90115-9.
  20. Ci L, Wei B, Liang J, Xu C, Wu D. Preparation of carbon nanotubules by the floating catalyst method. J Mater Sci Lett, 18, 797 (1999). http://dx.doi.org/10.1023/a:1006693117962.
  21. Ci L, Li Y, Wei B, Liang J, Xu C, Wu D. Preparation of carbon nanofibers by the floating catalyst method. Carbon, 38, 1933 (2000). http://dx.doi.org/10.1016/s0008-6223(00)00030-0.
  22. Zhong XH, Li YL, Liu YK, Qiao XH, Feng Y, Liang J, Jin J, Zhu L, Hou F, Li JY. Continuous multilayered carbon nanotube yarns. Adv Mater, 22, 692 (2010). http://dx.doi.org/10.1002/adma.200902943.
  23. Lee J, Jung Y, Song J, Kim JS, Lee GW, Jeong HJ, Jeong Y. Highperformance field emission from a carbon nanotube carpet. Carbon, 50, 3889 (2012). http://dx.doi.org/10.1016/j.carbon.2012.04.033.
  24. Nanocomp Technologies, Inc. [Internet]. Available from: http://www.nanocomptech.com.
  25. Motta M, Kinloch I, Moisala A, Premnath V, Pick M, Windle A. The parameter space for the direct spinning of fibres and films of carbon nanotubes. Physica E, 37, 40 (2007). http://dx.doi. org/10.1016/j.physe.2006.07.005.
  26. Jung YS, Song JY, Cho DH, Hu WS, Jeong YJ. Controlled production of carbon nanotube fibers. Carbon, submitted.
  27. Sundaram RM, Koziol KKK, Windle AH. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv Mater, 23, 5064 (2011). http://dx.doi.org/10.1002/ adma.201102754.
  28. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem Phys Lett, 317, 497 (2000). http://dx.doi.org/10.1016/s0009-2614(99)01379-2.
  29. Herrera JE, Resasco DE. Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst. J Catal, 221, 354 (2004). http://dx.doi.org/10.1016/j. jcat.2003.08.005.
  30. Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE. Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co−Mo catalysts. Chem Mater, 14, 1853 (2002). http://dx.doi.org/10.1021/cm011613t.
  31. Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008- 6223(95)00016-7.
  32. Conroy D, Moisala A, Cardoso S, Windle A, Davidson J. Carbon nanotube reactor: ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up. Chem Eng Sci, 65, 2965 (2010). http://dx.doi.org/10.1016/j.ces.2010.01.019.
  33. Motta MS, Moisala A, Kinloch IA, Windle AH. The role of sulphur in the synthesis of carbon nanotubes by chemical vapour deposition at high temperatures. J Nanosci Nanotechnol, 8, 2442 (2008). http://dx.doi.org/10.1166/jnn.2008.500.
  34. Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 18, 1505 (2006). http://dx.doi.org/10.1002/adma.200502528.
  35. Jiang K, Li Q, Fan S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 419, 801 (2002). http://dx.doi. org/10.1038/419801a.
  36. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi. org/10.1126/science.1115311.
  37. Jia J, Zhao J, Xu G, Di J, Yong Z, Tao Y, Fang C, Zhang Z, Zhang X, Zheng L, Li Q. A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon, 49, 1333 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.054.
  38. Wei Y, Jiang K, Feng X, Liu P, Liu L, Fan S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys Rev B, 76, 045423 (2007). http://dx.doi.org/10.1103/PhysRevB.76.045423.
  39. Vijaya KR, Mohammed Y, Shaik J, Merlyn XP, Valery NK. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology, 19, 245703 (2008). http:// dx.doi.org/10.1088/0957-4484/19/24/245703.
  40. Lanticse LJ, Tanabe Y, Matsui K, Kaburagi Y, Suda K, Hoteida M, Endo M, Yasuda E. Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon, 44, 3078 (2006). http://dx.doi. org/10.1016/j.carbon.2006.05.008.
  41. Gommans HH, Alldredge JW, Tashiro H, Park J, Magnuson J, Rinzler AG. Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J Appl Phys, 88, 2509 (2000). http:// dx.doi.org/10.1063/1.1287128.
  42. Pichot V, Burghammer M, Badaire S, Zakri C, Riekel C, Poulin P, Launois P. X-ray microdiffraction study of single-walled carbon nanotube alignment across a fibre. Europhys Lett, 79, 46002 (2007). http://dx.doi.org/10.1209/0295-5075/79/46002.
  43. Miao M. Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon, 50, 4973 (2012). http://dx.doi.org/10.1016/j.carbon.2012.06.035.
  44. Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano, 5, 985 (2011). http://dx.doi.org/10.1021/ nn102405u.
  45. Iijima T, Oshima H, Hayashi Y, Suryavanshi UB, Hayashi A, Tanemura M. In-situ observation of carbon nanotube fiber spinning from vertically aligned carbon nanotube forest. Diamond Relat Mater, 24, 158 (2012). http://dx.doi.org/10.1016/j.diamond.2012.01.002.
  46. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A. High-performance carbon nanotube fiber. Science, 318, 1892 (2007). http://dx.doi.org/10.1126/science.1147635.
  47. Sabelkin V, Misak HE, Mall S, Asmatulu R, Kladitis PE. Tensile loading behavior of carbon nanotube wires. Carbon, 50, 2530 (2012). http://dx.doi.org/10.1016/j.carbon.2012.01.077.
  48. Miao M, McDonnell J, Vuckovic L, Hawkins SC. Poisson's ratio and porosity of carbon nanotube dry-spun yarns. Carbon, 48, 2802 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.009.
  49. Sears K, Skourtis C, Atkinson K, Finn N, Humphries W. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon, 48, 4450 (2010). http://dx.doi.org/10.1016/j.carbon.2010.08.004.
  50. Cai JY, Min J, McDonnell J, Church JS, Easton CD, Humphries W, Lucas S, Woodhead AL. An improved method for functionalisation of carbon nanotube spun yarns with aryldiazonium compounds. Carbon, 50, 4655 (2012). http://dx.doi.org/10.1016/j.carbon. 2012.05.055.
  51. Boncel S, Sundaram RM, Windle AH, Koziol KKK. Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano, 5, 9339 (2011). http://dx.doi. org/10.1021/nn202685x.
  52. Miao M, Hawkins SC, Cai JY, Gengenbach TR, Knott R, Huynh CP. Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns. Carbon, 49, 4940 (2011). http://dx.doi. org/10.1016/j.carbon.2011.07.026.
  53. Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K. Scratchresistant, highly conductive, and high-strength carbon nanotubebased composite yarns. ACS Nano, 4, 5827 (2010). http://dx.doi. org/10.1021/nn1017318.
  54. Song SN, Wang XK, Chang RPH, Ketterson JB. Electronic properties of graphite nanotubules from galvanomagnetic effects. Phys Rev Lett, 72, 697 (1994). http://dx.doi.org/10.1103/PhysRevLett. 72.697.
  55. Bachtold A, Henny M, Terrier C, Strunk C, Schonenberger C, Salvetat JP, Bonard JM, Forro L. Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Appl Phys Lett, 73, 274 (1998). http://dx.doi.org/ 10.1063/1.121778.
  56. Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.
  57. Berger C, Yi Y, Wang ZL, de Heer WA. Multiwalled carbon nanotubes are ballistic conductors at room temperature. Appl Phys A, 74, 363 (2002). http://dx.doi.org/10.1007/s003390201279.
  58. Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 388, 255 (1997). https://doi.org/10.1038/40822
  59. Randeniya LK, Bendavid A, Martin PJ, Tran CD. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 6, 1806 (2010). http://dx.doi.org/10.1002/ smll.201000493.
  60. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. Super-tough carbon-nanotube fibres. Nature, 423, 703 (2003). http://dx.doi. org/10.1038/423703a.
  61. Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci, 106, 6044 (2009). http://dx.doi.org/10.1073/pnas.0900155106.
  62. Park G, Jung Y, Lee GW, Hinestroza J, Jeong Y. Carbon nanotube/ poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning. Fibers Polym, 13, 874 (2012). http://dx.doi. org/10.1007/s12221-012-0874-5.
  63. Airforce Technology. Tech Trends: The shrinking size of the cable (15 October 2009) [Internet]. Available from: http://www.airforcetechnology. com/features/feature66825.
  64. Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep, 1, 83 (2011). http://dx.doi.org/10.1038/srep00083.
  65. Nanotechweb. Carbon nanotubes extend superbridge design (May 30, 2008) [Internet]. Available from: http://nanotechweb.org/cws/ article/tech/34424.
  66. PhysOrg. Long, stretchy carbon nanotubes could make space elevators possible (Jan 23, 2009) [Internet]. Available from: http:// phys.org/news151938445.html.
  67. Kausala M, Zhang LC. Ballistic resistance capacity of carbon nanotubes. Nanotechnology, 18, 475701 (2007). http://dx.doi. org/10.1088/0957-4484/18/47/475701.

Cited by

  1. Carbon nanotubes-properties and applications: a review vol.14, pp.3, 2013, https://doi.org/10.5714/CL.2013.14.3.131
  2. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing vol.6, pp.8, 2014, https://doi.org/10.1039/C3NR06704A
  3. Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations vol.138, pp.49, 2016, https://doi.org/10.1021/jacs.6b08082
  4. Self-assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures vol.29, pp.1, 2017, https://doi.org/10.1002/adma.201603549
  5. High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites—A Review vol.56, pp.44, 2017, https://doi.org/10.1021/acs.iecr.7b02269
  6. Production of carbon nanotube yarn from swirled floating catalyst chemical vapour deposition: a preliminary study vol.9, pp.3, 2018, https://doi.org/10.1088/2043-6254/aad5cb