DOI QR코드

DOI QR Code

Identification of novel peptides that stimulate human neutrophils

  • Bae, Geon Ho (Department of Biological Sciences, Sungkyunkwan University) ;
  • Lee, Ha Young (Department of Biological Sciences, Sungkyunkwan University) ;
  • Jung, Young Su (Department of Biological Sciences, Sungkyunkwan University) ;
  • Shim, Jae Woong (Department of Biological Sciences, Sungkyunkwan University) ;
  • Kim, Sang Doo (Department of Biological Sciences, Sungkyunkwan University) ;
  • Baek, Suk-Hwan (Department of Biochemistry and Molecular Biology, Yeungnam University) ;
  • Kwon, Jae Young (Department of Biological Sciences, Sungkyunkwan University) ;
  • Park, Joon Seong (Department of Hematology-Oncology, Ajou University School of Medicine) ;
  • Bae, Yoe-Sik (Department of Biological Sciences, Sungkyunkwan University)
  • Accepted : 2011.11.14
  • Published : 2012.02.29

Abstract

Neutrophils play a key role in innate immunity, and the identification of new stimuli that stimulate neutrophil activity is a very important issue. In this study, we identified three novel peptides by screening a synthetic hexapeptide combinatorial library. The identified peptides GMMWAI, MMHWAM, and MMHWFM caused an increase in intracellular $Ca^{2+}$ in a concentration-dependent manner via phospholipase C activity in human neutrophils. The three peptides acted specifically on neutrophils and monocytes and not on other non-leukocytic cells. As a physiological characteristic of the peptides, we observed that the three peptides induced chemotactic migration of neutrophils as well as stimulated superoxide anion production. Studying receptor specificity, we observed that two of the peptides (GMMWAI and MMHWFM) acted on formyl peptide receptor (FPR)1 while the other peptide (MMHWAM) acted on FPR2. Since the three novel peptides were specific agonists for FPR1 or FPR2, they might be useful tools to study FPR1- or FPR2-mediated immune response and signaling.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 1999;285:2129-33 https://doi.org/10.1126/science.285.5436.2129
  2. Badolato R, Johnston JA, Wang JM, McVicar D, Xu LL, Oppenheim JJ, et al. Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J Immunol 1995;155:4004-10
  3. Bae YS, Kim Y, Kim Y, Kim JH, Suh PG, Ryu SH. Trp-Lys-Tyr-Met-Val-D-Met is a chemoattractant for human phagocytic cells. J Leukoc Biol 1999;66:915-22 https://doi.org/10.1002/jlb.66.6.915
  4. Bae YS, Bae H, Kim Y, Lee TG, Suh PG, Ryu SH. Identification of novel chemoattractant peptides for human leukocytes. Blood 2001;97:2854-62 https://doi.org/10.1182/blood.V97.9.2854
  5. Bae YS, Park EY, Kim Y, He R, Ye RD, Kwak JY, et al. Novel chemoattractant peptides for human leukocytes. Biochem Pharmacol 2003;66:1841-51 https://doi.org/10.1016/S0006-2952(03)00552-5
  6. Bae YS, Lee HY, Jo EJ, Kim JI, Kang HK, Ye RD, et al. Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J Immunol 2004;173: 607-14 https://doi.org/10.4049/jimmunol.173.1.607
  7. Berridge MJ. Inositol trisphosphate and calcium signaling. Nature 1993;361:315-25 https://doi.org/10.1038/361315a0
  8. Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010;33:657-70 https://doi.org/10.1016/j.immuni.2010.11.011
  9. Burnashev N. Calcium permeability of ligand-gated channels. Cell Calcium 1998;24:325-32 https://doi.org/10.1016/S0143-4160(98)90056-2
  10. Dahlgren C, Karlsson A. Respiratory burst in human neutrophils. J Immunol Methods 1999;232:3-14 https://doi.org/10.1016/S0022-1759(99)00146-5
  11. de Paulis A, Ciccarelli A, de Crescenzo G, Cirillo R, Patella V, Marone G. Cyclosporin H is a potent and selective competitive antagonist of human basophil activation by N-formyl-methionyl-leucyl-phenylalanine. J Allergy Clin Immunol 1996;98:152-64 https://doi.org/10.1016/S0091-6749(96)70237-3
  12. Dooley CT, Ny P, Bidlack JM, Houghten RA. Selective ligands for the mu, delta, and kappa opioid receptors identified from a single mixture based tetrapeptide positional scanning combinatorial library. J Biol Chem 1998;273:18848-56 https://doi.org/10.1074/jbc.273.30.18848
  13. Hayashi S, Kurdowska A, Miller EJ, Albright ME, Girten BE, Cohen AB. Synthetic hexa- and heptapeptides that inhibit IL-8 from binding to and activating human blood neutrophils. J Immunol 1995;154:814-24
  14. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 1991;354:84-6 https://doi.org/10.1038/354084a0
  15. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci 2008;13:2400-7 https://doi.org/10.2741/2853
  16. Grynkiewicz G, Poenie M, Tsien RY. A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440-50
  17. Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 2010;10:1325-34 https://doi.org/10.1016/j.intimp.2010.08.012
  18. Lee HY, Kim SD, Shim JW, Lee SY, Lee H, Cho KH, et al. Serum amyloid A induces CCL2 production via formyl peptide receptor-like 1-mediated signaling in human monocytes. J Immunol 2008;181:4332-9 https://doi.org/10.4049/jimmunol.181.6.4332
  19. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 1997;122:498-505 https://doi.org/10.1093/oxfordjournals.jbchem.a021780
  20. Noh DY, Shin SH, Rhee SG. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim Biophys Acta 1995;1242:99-113
  21. Owens RA, Gesellchen PD, Houchins BJ, DiMarchi RD. The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures. Biochem Biophys Res Commun 1991;181:402-8 https://doi.org/10.1016/S0006-291X(05)81433-0
  22. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001;70:281-312 https://doi.org/10.1146/annurev.biochem.70.1.281
  23. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta 1986;853:65-89 https://doi.org/10.1016/0304-4173(86)90005-4
  24. Sabroe I, Prince LR, Jones EC, Horsburgh MJ, Foster SJ, Vogel SN, et al. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 2003;170:5268-75 https://doi.org/10.4049/jimmunol.170.10.5268
  25. Segal AW, Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 1993;18:43-7 https://doi.org/10.1016/0968-0004(93)90051-N
  26. Seo JK, Choi SY, Kim Y, Baek SH, Kim KT, Chae CB, et al. A peptide with unique receptor specificity: stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils. J Immunol 1997;158:1895-901
  27. Spilberg I, Mehta J, Daughaday C, Simchowitz L. Determination of a specific receptor for formyl-methionylleucyl- phenylalanine on th pulmonary alveolar macrophage and its relationship to chemotaxis and superoxide production. J Lab Clin Med 1981;97:602-9
  28. Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, et al. Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem 2001;276:23645-52 https://doi.org/10.1074/jbc.M101031200
  29. Walther A, Riehemann K, Gerke V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell 2000;5:831-40 https://doi.org/10.1016/S1097-2765(00)80323-8
  30. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009;61:119-61 https://doi.org/10.1124/pr.109.001578
  31. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM. Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol 2010;298:C430-41 https://doi.org/10.1152/ajpcell.00475.2009

Cited by

  1. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2) Agonists vol.14, pp.4, 2012, https://doi.org/10.3390/ijms14047193
  2. Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils vol.45, pp.6, 2012, https://doi.org/10.1038/emm.2013.48
  3. Mouse neutrophils express functional umami taste receptor T1R1/T1R3 vol.47, pp.11, 2014, https://doi.org/10.5483/bmbrep.2014.47.11.185
  4. A novel natural compound from garlic (Allium sativum L.) with therapeutic effects against experimental polymicrobial sepsis vol.464, pp.3, 2012, https://doi.org/10.1016/j.bbrc.2015.07.031
  5. Fracture initiates systemic inflammatory response syndrome through recruiting polymorphonuclear leucocytes vol.64, pp.4, 2012, https://doi.org/10.1007/s12026-016-8801-2
  6. A novel antimicrobial peptide acting via formyl peptide receptor 2 shows therapeutic effects against rheumatoid arthritis vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-32963-5
  7. Chemotactic Ligands that Activate G-Protein-Coupled Formylpeptide Receptors vol.20, pp.14, 2012, https://doi.org/10.3390/ijms20143426
  8. Therapeutic effects of probiotic Clostridium butyricum WZ001 on bacterial vaginosis in mice vol.127, pp.2, 2012, https://doi.org/10.1111/jam.14329
  9. Novel CD11b + Gr-1 + Sca-1 + myeloid cells drive mortality in bacterial infection vol.6, pp.4, 2012, https://doi.org/10.1126/sciadv.aax8820