DOI QR코드

DOI QR Code

CpG methylation at GATA elements in the regulatory region of CCR3 positively correlates with CCR3 transcription

  • Uhm, Tae Gi (Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University) ;
  • Lee, Seol Kyung (Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University) ;
  • Kim, Byung Soo (Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University) ;
  • Kang, Jin Hyun (Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University) ;
  • Park, Choon-Sik (Genome Research Center for Allergy and Respiratory Disease, Soonchunhyang University Bucheon Hospital) ;
  • Rhim, Tai Youn (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Chang, Hun Soo (Pharmacogenomic Research Center for Psychotropic Drugs, Korea University) ;
  • Kim, Do-Jin (Genome Research Center for Allergy and Respiratory Disease, Soonchunhyang University Bucheon Hospital) ;
  • Chung, Il Yup (Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University)
  • Accepted : 2012.01.02
  • Published : 2012.04.30

Abstract

DNA methylation may regulate gene expression by restricting the access of transcription factors. We have previously demonstrated that GATA-1 regulates the transcription of the CCR3 gene by dynamically interacting with both positively and negatively acting GATA elements of high affinity binding in the proximal promoter region including exon 1. Exon 1 has three CpG sites, two of which are positioned at the negatively acting GATA elements. We hypothesized that the methylation of these two CpGs sites might preclude GATA-1 binding to the negatively acting GATA elements and, as a result, increase the availability of GATA-1 to the positively acting GATA element, thereby contributing to an increase in GATA-1-mediated transcription of the gene. To this end, we determined the methylation of the three CpG sites by bisulfate pyrosequencing in peripheral blood eosinophils, cord blood (CB)-derived eosinophils, PBMCs, and cell lines that vary in CCR3 mRNA expression. Our results demonstrated that methylation of CpG sites at the negatively acting GATA elements severely reduced GATA-1 binding and augmented transcription activity in vitro. In agreement, methylation of these CpG sites positively correlated with CCR3 mRNA expression in the primary cells and cell lines examined. Interestingly, methylation patterns of these three CpG sites in CB-derived eosinophils mostly resembled those in peripheral blood eosinophils. These results suggest that methylation of CpG sites at the GATA elements in the regulatory regions fine-tunes CCR3 transcription.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. O, Katsura T, Inui K. Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation. Am J Physiol Renal Physiol 2008;295: F165-70 https://doi.org/10.1152/ajprenal.90257.2008
  2. Beck LA, Tancowny B, Brummet ME, Asaki SY, Curry SL, Penno MB, Foster M, Bahl A, Stellato C. Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. J Immunol 2006;177:3344-54 https://doi.org/10.4049/jimmunol.177.5.3344
  3. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000;405:482-5 https://doi.org/10.1038/35013100
  4. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 2009;41:1207-15 https://doi.org/10.1038/ng.463
  5. Bystrom J, Wynn TA, Domachowske JB, Rosenberg HF. Gene microarray analysis reveals interleukin-5-dependent transcriptional targets in mouse bone marrow. Blood 2004; 103:868-77
  6. Comb M, Goodman HM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 1990;18:3975-82 https://doi.org/10.1093/nar/18.13.3975
  7. Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 1996;183:2349-54 https://doi.org/10.1084/jem.183.5.2349
  8. Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE, Lekstrom- Himes JA, Ackerman SJ. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 2002;277:43481-94 https://doi.org/10.1074/jbc.M204777200
  9. Dyer KD, Rosenberg HF. Shared features of transcription: mutational analysis of the eosinophil/basophil Charcot- Leyden crystal protein gene promoter. J Leukoc Biol 2000; 67:691-8 https://doi.org/10.1002/jlb.67.5.691
  10. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005;25:1215-27 https://doi.org/10.1128/MCB.25.4.1215-1227.2005
  11. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003;167:199-204 https://doi.org/10.1164/rccm.200208-789OC
  12. Forsythe P, Befus AD. CCR3: a key to mast cell phenotypic and functional diversity? Am J Respir Cell Mol Biol 2003;28: 405-9 https://doi.org/10.1165/rcmb.F265
  13. Goren A, Simchen G, Fibach E, Szabo PE, Tanimoto K, Chakalova L, Pfeifer GP, Fraser PJ, Engel JD, Cedar H. Fine tuning of globin gene expression by DNA methylation. PLoS One 2006;1:e46 https://doi.org/10.1371/journal.pone.0000046
  14. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009;360:973-84 https://doi.org/10.1056/NEJMoa0808991
  15. Hattori N, Nishino K, Ko YG, Ohgane J, Tanaka S, Shiota K. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 2004;279:17063-9 https://doi.org/10.1074/jbc.M309002200
  16. Hantusch B, Kalt R, Krieger S, Puri C, Kerjaschki D. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol Biol 2007;8:20 https://doi.org/10.1186/1471-2199-8-20
  17. Hirasawa R, Shimizu R, Takahashi S, Osawa M, Takayanagi S, Kato Y, Onodera M, Minegishi N, Yamamoto M, Fukao K, Taniguchi H, Nakauchi H, Iwama A. Essential and instructive roles of GATA factors in eosinophil development. J Exp Med 2002;195:1379-86 https://doi.org/10.1084/jem.20020170
  18. Holler M, Westin G, Jiricny J, Schaffner W. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev 1988;2:1127-35 https://doi.org/10.1101/gad.2.9.1127
  19. Ishihara K, Takahashi A, Kaneko M, Sugeno H, Hirasawa N, Hong J, Zee O, Ohuchi K. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors. Life Sci 2007;80:1213-20 https://doi.org/10.1016/j.lfs.2006.12.016
  20. Iwama A, Osawa M, Hirasawa R, Uchiyama N, Kaneko S, Onodera M, Shibuya K, Shibuya A, Vinson C, Tenen DG, Nakauchi H. Reciprocal roles for CCAAT/enhancer binding protein (C/EBP) and PU.1 transcription factors in Langerhans cell commitment. J Exp Med 2002;195:547-58 https://doi.org/10.1084/jem.20011465
  21. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010;467:338-42 https://doi.org/10.1038/nature09367
  22. Kang JH, Lee DH, Lee JS, Kim HJ, Shin JW, Lee YH, Lee YS, Park CS, Chung IY. Eosinophilic differentiation is promoted by blockage of Notch signaling with a gamma-secretase inhibitor. Eur J Immunol 2005;35:2982-90 https://doi.org/10.1002/eji.200526242
  23. Kim BS, Uhm TG, Lee SK, Lee SH, Kang JH, Park CS, Chung IY. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. J Immunol 2010;185:6866-75 https://doi.org/10.4049/jimmunol.1001037
  24. Kim do N, Song YJ, Lee SK. The role of promoter methylation in Epstein-Barr virus (EBV) microRNA expression in EBV-infected B cell line. Exp Mol Med 2011;43:401-10 https://doi.org/10.3858/emm.2011.43.7.044
  25. Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptorinduced FoxP3 gene expression: a role for DNA methylation. J Exp Med 2007;204:1543-51
  26. Kitaura M, Nakajima T, Imai T, Harada S, Combadiere C. Tiffany HL, Murphy PM, Yoshie O. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem 1996;271:7725-30 https://doi.org/10.1074/jbc.271.13.7725
  27. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006;31:89-97 https://doi.org/10.1016/j.tibs.2005.12.008
  28. Lamkhioued B, Abdelilah SG, Hamid Q, Mansour N, Delespesse G, Renzi PM. The CCR3 receptor is involved in eosinophil differentiation and is up-regulated by Th2 cytokines in $CD34^{+}$ progenitor cells. J Immunol 2003;170:537-47 https://doi.org/10.4049/jimmunol.170.1.537
  29. Leckie MJ, Ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000;356:2144-8 https://doi.org/10.1016/S0140-6736(00)03496-6
  30. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662-73 https://doi.org/10.1038/nrg887
  31. McNagny K, Graf T. Making eosinophils through subtle shifts in transcription factor expression. J Exp Med 2002;195: F43-7 https://doi.org/10.1084/jem.20020636
  32. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008;454:766-70 https://doi.org/10.1038/nature07107
  33. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O'Byrne PM. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 2009;360:985-93 https://doi.org/10.1056/NEJMoa0805435
  34. Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998; 12:2403-12 https://doi.org/10.1101/gad.12.15.2403
  35. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-57 https://doi.org/10.1016/S0092-8674(00)81656-6
  36. Perini G, Diolaiti D, Porro A, Della Valle G. In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA 2005;102: 12117-22 https://doi.org/10.1073/pnas.0409097102
  37. Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 1996;183:2437-48 https://doi.org/10.1084/jem.183.6.2437
  38. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylationsensitive DNA binding and ras cotransformation. Cell 1991; 65:395-407 https://doi.org/10.1016/0092-8674(91)90457-A
  39. Qiu Z, Dyer KD, Xie Z, Radinger M, Rosenberg HF. GATA transcription factors regulate the expression of the human eosinophil-derived neurotoxin (RNase 2) gene. J Biol Chem 2009;284:13099-109 https://doi.org/10.1074/jbc.M807307200
  40. Radinger M, Lotvall J. Eosinophil progenitors in allergy and asthma do they matter? Pharmacol Ther 2009;121:174-84 https://doi.org/10.1016/j.pharmthera.2008.10.008
  41. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447:425-32 https://doi.org/10.1038/nature05918
  42. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol 2006;24:147-74 https://doi.org/10.1146/annurev.immunol.24.021605.090720
  43. Sallusto F, Mackay CR, Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997;277:2005-7 https://doi.org/10.1126/science.277.5334.2005
  44. Scotet E, Schroeder S, Lanzavecchia A. Molecular regulation of CC-chemokine receptor 3 expression in human T helper 2 cells. Blood 2001;98:2568-70 https://doi.org/10.1182/blood.V98.8.2568
  45. Stellato C, Brummet ME, Plitt JR, Shahabuddin S, Baroody FM, Liu MC, Ponath PD, Beck LA. Expression of the C-C chemokine receptor CCR3 in human airway epithelial cells. J Immunol 2001;166:1457-61 https://doi.org/10.4049/jimmunol.166.3.1457
  46. Sunahori K, Juang YT, Tsokos GC. Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity. J Immunol 2009;182:1500-8 https://doi.org/10.4049/jimmunol.182.3.1500
  47. Tiffany HL, Alkhatib G, Combadiere C, Berger EA, Murphy PM. CC chemokine receptors 1 and 3 are differentially regulated by IL-5 during maturation of eosinophilic HL-60 cells. J Immunol 1998;160:1385-92
  48. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 2009;5:442-9 https://doi.org/10.1016/j.stem.2009.08.016
  49. Van der Ploeg LH, Flavell RA. DNA methylation in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues. Cell 1980;19:947-58 https://doi.org/10.1016/0092-8674(80)90086-0
  50. Vijh S, Dayhoff DE, Wang CE, Imam Z, Ehrenberg PK, Michael NL. Transcription regulation of human chemokine receptor CCR3: evidence for a rare TATA-less promoter structure conserved between drosophila and humans. Genomics 2002;80:86-95 https://doi.org/10.1006/geno.2002.6801
  51. Willems LI, Ijzerman AP. Small molecule antagonists for chemokine CCR3 receptors. Med Res Rev 2010;30:778-817
  52. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 2002;195:1387-95 https://doi.org/10.1084/jem.20020656
  53. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997;94:569-74 https://doi.org/10.1073/pnas.94.2.569
  54. Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C, Santacruz D, Ragozin S, Reinhardt R, Groth M, Walter J, Jeltsch A. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet 2009;5:e1000438 https://doi.org/10.1371/journal.pgen.1000438
  55. Zhao Z, Han L. CpG islands: algorithms and applications in methylation studies. Biochem Biophys Res Commun 2009; 382:643-5 https://doi.org/10.1016/j.bbrc.2009.03.076
  56. Zimmermann N, Daugherty BL, Kavanaugh JL, El-Awar FY, Moulton EA, Rothenberg ME. Analysis of the CC chemokine receptor 3 gene reveals a complex 5' exon organization, a functional role for untranslated exon 1, and a broadly active promoter with eosinophil-selective elements. Blood 2000; 96:2346-54
  57. Zimmermann N, Colyer JL, Koch LE, Rothenberg ME. Analysis of the CCR3 promoter reveals a regulatory region in exon 1 that binds GATA-1. BMC Immunol 2005;6:7 https://doi.org/10.1186/1471-2172-6-7

Cited by

  1. Different GATA Factors Dictate CCR3 Transcription in Allergic Inflammatory Cells in a Cell Type–Specific Manner vol.190, pp.11, 2012, https://doi.org/10.4049/jimmunol.1203542
  2. Loss of Expression of Cyclin D2 by Aberrant DNA Methylation: a Potential Biomarker in Vietnamese Breast Cancer Patients vol.16, pp.6, 2015, https://doi.org/10.7314/apjcp.2015.16.6.2209
  3. Olig2 is expressed late in human eosinophil development and controls Siglec-8 expression vol.100, pp.4, 2016, https://doi.org/10.1189/jlb.1a0715-314rrr
  4. Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease vol.48, pp.1, 2016, https://doi.org/10.1038/emm.2015.96
  5. Allele-specific DNA methylation reinforces PEAR1 enhancer activity vol.128, pp.7, 2016, https://doi.org/10.1182/blood-2015-11-682153
  6. Terminally Differentiating Eosinophils Express Neutrophil Primary Granule Proteins as well as Eosinophil-specific Granule Proteins in a Temporal Manner vol.17, pp.6, 2012, https://doi.org/10.4110/in.2017.17.6.410
  7. Cell-Specific PEAR1 Methylation Studies Reveal a Locus that Coordinates Expression of Multiple Genes vol.19, pp.4, 2012, https://doi.org/10.3390/ijms19041069
  8. Lysophosphatidylserine receptor P2Y10: A G protein‐coupled receptor that mediates eosinophil degranulation vol.48, pp.8, 2012, https://doi.org/10.1111/cea.13162
  9. Bioinformatics Analysis of SNPs in IL-6 Gene Promoter of Jinghai Yellow Chickens vol.9, pp.9, 2012, https://doi.org/10.3390/genes9090446
  10. Age-associated methylation change of CHI promoter in herbaceous peony ( Paeonia lactiflora Pall) vol.38, pp.5, 2018, https://doi.org/10.1042/bsr20180482
  11. New Insight into the Molecular Mechanism of the FUT2 Regulating Escherichia coli F18 Resistance in Weaned Piglets vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113301
  12. Regulatory Effect of Methylation of the Porcine AQP3 Gene Promoter Region on Its Expression Level and Porcine Epidemic Diarrhea Virus Resistance vol.11, pp.10, 2020, https://doi.org/10.3390/genes11101167
  13. Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle? vol.22, pp.16, 2012, https://doi.org/10.3390/ijms22168921