DOI QR코드

DOI QR Code

Cotinine-conjugated aptamer/anti-cotinine antibody complexes as a novel affinity unit for use in biological assays

  • Park, Sunyoung (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Hwang, Dobin (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Chung, Junho (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
  • Accepted : 2012.07.02
  • Published : 2012.09.30

Abstract

Aptamers are synthetic, relatively short (e.g., 20-80 bases) RNA or ssDNA oligonucleotides that can bind targets with high affinity and specificity, similar to antibodies, because they can fold into unique, three-dimensional shapes. For use in various assays and experiments, aptamers have been conjugated with biotin or digoxigenin to form complexes with avidin or anti-digoxigenin antibodies, respectively. In this study, we developed a method to label the 5' ends of aptamers with cotinine, which allows formation of a stable complex with anti-cotinine antibodies for the purpose of providing another affinity unit for the application in biological assays using aptamers. To demonstrate the functionality of this affinity unit in biological assays, we utilized two well-known aptamers: AS1411, which binds nucleolin, and pegaptanib, which binds vascular endothelial growth factor. Cotinine-conjugated AS1411/anti-cotinine antibody complexes were successfully applied to immunoblot, immunoprecipitation, and flow cytometric analyses, and cotinine-conjugated pegaptanib/anti-cotinine antibody complexes were used successfully in enzyme immunoassays. Our results show that cotinine-conjugated aptamer/anti-cotinine antibody complexes are an effective alternative and complementary technique for aptamer use in multiple assays and experiments.

Keywords

Acknowledgement

Supported by : Ministry of Education, Science and Technology

References

  1. Backmann N, Zahnd C, Huber F, Bietsch A, Pluckthun A, Lang HP, Guntherodt HJ, Hegner M, Gerber C. A label-free immunosensor array using single-chain antibody fragments. Proc Natl Acad Sci USA 2005;102:14587-92 https://doi.org/10.1073/pnas.0504917102
  2. Baldrich E, Acero JL, Reekmans G, Laureyn W, O'Sullivan CK. Displacement enzyme linked aptamer assay. Anal Chem 2005;77:4774-84 https://doi.org/10.1021/ac0502450
  3. Bates PJ, Kahlon JB, Thomas SD, Trent JO, Miller DM. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 1999;274:26369-77 https://doi.org/10.1074/jbc.274.37.26369
  4. Bender DA. Optimum nutrition: thiamin, biotin and pantothenate. Proc Nutr Soc 1999;58:427-33 https://doi.org/10.1017/S0029665199000567
  5. Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 2001;276:16464-8 https://doi.org/10.1074/jbc.M100347200
  6. Borisov SM, Wolfbeis OS. Optical biosensors. Chem Rev 2008;108:423-61 https://doi.org/10.1021/cr068105t
  7. Chen CM, Chiang SY, Yeh NH. Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J Biol Chem 1991;266:7754-8
  8. Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, Zhang G, Li X, Liu Z, Utz PJ, Jiang K, Fan S, Dai H. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol 2008;26:1285-92 https://doi.org/10.1038/nbt.1501
  9. Dapic V, Bates PJ, Trent JO, Rodger A, Thomas SD, Miller DM. Antiproliferative activity of G-quartet-forming oligonucleotides with backbone and sugar modifications. Biochemistry 2002;41:3676-85 https://doi.org/10.1021/bi0119520
  10. Dapic V, Abdomerovic V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res 2003;31:2097-107 https://doi.org/10.1093/nar/gkg316
  11. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346:818-22 https://doi.org/10.1038/346818a0
  12. Fang SH, Yeh NH. The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp Cell Res 1993;208:48-53 https://doi.org/10.1006/excr.1993.1221
  13. Ferreira CS, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S. DNA aptamers against the MUC1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 2008;390:1039-50 https://doi.org/10.1007/s00216-007-1470-1
  14. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2007;2:577-83 https://doi.org/10.1038/nnano.2007.260
  15. Guo KT, SchAfer R, Paul A, Gerber A, Ziemer G, Wendel HP. A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 2006;24:2220-31 https://doi.org/10.1634/stemcells.2006-0015
  16. Hanakahi LA, Dempsey LA, Li MJ, Maizels N. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc Natl Acad Sci USA 1997;94:3605-10 https://doi.org/10.1073/pnas.94.8.3605
  17. Harada K, Frankel AD. Identification of two novel arginine binding DNAs. EMBO J 1995;14:5798-811
  18. Hauptmann G, Gerster T. Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet 1994;10:266 https://doi.org/10.1016/0168-9525(90)90008-T
  19. Holtke HJ, Ankenbauer W, Muhlegger K, Rein R, Sagner G, Seibl R, Walter T. The digoxigenin (DIG) system for non-radioactive labelling and detection of nucleic acids--an overview. Cell Mol Biol (Noisy-le-grand) 1995;41:883-905
  20. Homann M, Goringer HU. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res 1999;27:2006-14 https://doi.org/10.1093/nar/27.9.2006
  21. Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther 2006;5:2957-62 https://doi.org/10.1158/1535-7163.MCT-06-0172
  22. Li N, Ebright JN, Stovall GM, Chen X, Nguyen HH, Singh A, Syrett A, Ellington AD. Technical and biological issues relevant to cell typing with aptamers. J Proteome Res 2009;8:2438-48 https://doi.org/10.1021/pr801048z
  23. Liu G, Lin YY, Wang J, Wu H, Wai CM, Lin Y. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 2007;79:7644-53 https://doi.org/10.1021/ac070691i
  24. Masumi A, Fukazawa H, Shimazu T, Yoshida M, Ozato K, Komuro K, Yamaguchi K. Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation. Oncogene 2006;25:5113-24 https://doi.org/10.1038/sj.onc.1209522
  25. Miyakawa S, Oguro A, Ohtsu T, Imataka H, Sonenberg N, Nakamura Y. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA 2006;12:1825-34 https://doi.org/10.1261/rna.2169406
  26. Murphy MB, Fuller ST, Richardson PM, Doyle SA. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res 2003;31:e110 https://doi.org/10.1093/nar/gng110
  27. Ng EW, Adamis AP. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann N Y Acad Sci 2006;1082:151-71 https://doi.org/10.1196/annals.1348.062
  28. Oguro A, Ohtsu T, Svitkin YV, Sonenberg N, Nakamura Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 2003;9:394-407 https://doi.org/10.1261/rna.2161303
  29. Ohuchi SP, Ohtsu T, Nakamura Y. Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 2006;88:897-904 https://doi.org/10.1016/j.biochi.2006.02.004
  30. Park S, Lee DH, Park JG, Lee YT, Chung J. A sensitive enzyme immunoassay for measuring cotinine in passive smokers. Clin Chim Acta 2010;411:1238-42 https://doi.org/10.1016/j.cca.2010.04.027
  31. Ramos E, Pineiro D, Soto M, Abanades DR, Martin ME, Salinas M, Gonzalez VM. A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Lab Invest 2007;87:409-16 https://doi.org/10.1038/labinvest.3700535
  32. Ramos E, Moreno M, Martin ME, Soto M, Gonzalez VM. In vitro selection of Leishmania infantum H3-binding ssDNA aptamers. Oligonucleotides 2010;20:207-13 https://doi.org/10.1089/oli.2010.0240
  33. Ramos-Vara JA. Technical aspects of immunohistochemistry. Vet Pathol 2005;42:405-26 https://doi.org/10.1354/vp.42-4-405
  34. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic N. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 1998;273:20556-67 https://doi.org/10.1074/jbc.273.32.20556
  35. Sakai N, Masuda H, Akitomi J, Yagi H, Yoshida Y, Horii K, Furuichi M, Waga I. RNA aptamers specifically interact with the Fc region of mouse immunoglobulin G. Nucleic Acids Symp Ser (Oxf) 2008:487-8
  36. Semenkovich CF, Ostlund RE Jr, Olson MO, Yang JW. A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically is nucleolin. Biochemistry 1990;29:9708-13 https://doi.org/10.1021/bi00493a028
  37. Shaikh NA, Ge J, Zhao YX, Walker P, Drebot M. Development of a novel, rapid, and sensitive immunochromatographic strip assay specific for West Nile Virus (WNV) IgM and testing of its diagnostic accuracy in patients suspected of WNV infection. Clin Chem 2007;53:2031-4 https://doi.org/10.1373/clinchem.2007.091140
  38. Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D, Spicer EK, Fernandes DJ. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol 2009;76:984-91 https://doi.org/10.1124/mol.109.055947
  39. Tanaka Y, Honda T, Matsuura K, Kimura Y, Inui M. In vitro selection and characterization of DNA aptamers specific for phospholamban. J Pharmacol Exp Ther 2009;329:57-63 https://doi.org/10.1124/jpet.108.149526
  40. Trill JJ, Shatzman AR, Ganguly S. Production of monoclonal antibodies in COS and CHO cells. Curr Opin Biotechnol 1995;6:553-60 https://doi.org/10.1016/0958-1669(95)80092-1
  41. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505-10 https://doi.org/10.1126/science.2200121
  42. Ulrich H, Ippolito JE, Pagan OR, Eterovic VA, Hann RM, Shi H, Lis JT, Eldefrawi ME, Hess GP. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1998;95:14051-6 https://doi.org/10.1073/pnas.95.24.14051
  43. Ulrich H, Magdesian MH, Alves MJ, Colli W. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem 2002;277:20756-62 https://doi.org/10.1074/jbc.M111859200
  44. Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 1996;272:1343-7 https://doi.org/10.1126/science.272.5266.1343

Cited by

  1. Application of bispecific antibody against antigen and hapten for immunodetection and immunopurification vol.45, pp.9, 2013, https://doi.org/10.1038/emm.2013.83
  2. Bispecific Her2 × cotinine antibody in combination with cotinine-(histidine)2-iodine for the pre-targeting of Her2-positive breast cancer xenografts vol.140, pp.2, 2012, https://doi.org/10.1007/s00432-013-1548-4
  3. In vitro and in vivo application of anti-cotinine antibody and cotinine-conjugated compounds vol.47, pp.3, 2014, https://doi.org/10.5483/bmbrep.2014.47.3.006
  4. G-quartet oligonucleotide mediated delivery of proteins into photoreceptors and retinal pigment epithelium via intravitreal injection vol.145, pp.None, 2016, https://doi.org/10.1016/j.exer.2016.02.009
  5. Switchable Control of Antibiotic Activity: A Shape-Shifting “Tail” Strategy vol.29, pp.1, 2012, https://doi.org/10.1021/acs.bioconjchem.7b00599
  6. An anti-EGFR × cotinine bispecific antibody complexed with cotinine-conjugated duocarmycin inhibits growth of EGFR-positive cancer cells with KRAS mutations vol.50, pp.5, 2012, https://doi.org/10.1038/s12276-018-0096-z
  7. Antibody-Assisted Delivery of a Peptide-Drug Conjugate for Targeted Cancer Therapy vol.16, pp.1, 2012, https://doi.org/10.1021/acs.molpharmaceut.8b00924
  8. Therapeutic Application of Drug-Conjugated HER2 Oligobody (HER2-DOligobody) vol.21, pp.9, 2012, https://doi.org/10.3390/ijms21093286
  9. Biomedical Applications of a Novel Class of High-Affinity Peptides vol.54, pp.18, 2021, https://doi.org/10.1021/acs.accounts.1c00239