DOI QR코드

DOI QR Code

Interfacial Adhesion Properties of Oxygen Plasma Treated Polyketone Fiber with Natural Rubber

폴리케톤 섬유의 산소 플라즈마 처리에 따른 천연고무와의 계면접착 특성

  • Won, Jong Sung (BK21 FTIT, Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Choi, Hae Young (BK21 FTIT, Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Yoo, Jae Jung (BK21 FTIT, Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Choi, Han Na (BK21 FTIT, Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Yong, Da Kyung (BK21 FTIT, Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Lee, Seung Goo (BK21 FTIT, Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University)
  • 원종성 (충남대학교 유기소재섬유시스템공학과) ;
  • 최혜영 (충남대학교 유기소재섬유시스템공학과) ;
  • 유재정 (충남대학교 유기소재섬유시스템공학과) ;
  • 최한나 (충남대학교 유기소재섬유시스템공학과) ;
  • 용다경 (충남대학교 유기소재섬유시스템공학과) ;
  • 이승구 (충남대학교 유기소재섬유시스템공학과)
  • Received : 2012.02.01
  • Accepted : 2012.03.08
  • Published : 2012.01.31

Abstract

Recently developed polyketone fiber has various applications in the mechanical rubber goods as reinforcement because of its good mechanical properties. However, its surface is not suitable for good adhesion with the rubber matrix. Thus, a surface modification is essential to obtain the good interfacial adhesion. Plasma treatment, in this study, has been conducted to modify the surface of the polyketone fiber. The morphological changes of the fibers by oxygen plasma treatment were observed by using SEM and AFM. The chemical composition changes of PK fiber surface treated with oxygen plasma were investigated using an XPS (X-ray photoelectron spectroscopy). Finally, the effect of these changes on the interfacial adhesion between fiber and rubber was analyzed by using a microdroplet debonding test. By the plasma treatment, oxygen moieties on the fiber surface increased with processing time and power. The surface RMS roughness increases until the proper processing condition, but a long plasma processing time resulted in a rather reduced roughness because of surface degradation. When the treatment time and power were 60 s and 80 W, respectively, the highest interfacial shear strength (IFSS) was obtained between the PK fiber and natural rubber. However, as the treatment time and power were higher than 60 s and 80 W, respectively, the IFSS decreased because of degradation of the PK fiber surface by severe plasma treatment.

폴리케톤(polyketone, PK) 섬유는 고무의 강화재로 사용하기 위해서 최근 개발되고 있는 소재이다. 섬유의 고무와의 접착성을 향상시키기 위하여 플라즈마로 표면을 개질하였다. 산소 플라즈마 처리에 의한 섬유표면의 물리적 형태변화를 관찰하기 위하여 주사전자현미경과 원자현미경을 이용하여 관찰하였다. 섬유표면의 화학적 조성변화를 XPS (X-ray photoelectron spectroscopy)를 이용하여 알아보았다. 최종적으로 이러한 변화가 PK 섬유와 고무와의 계면접착력에 어떠한 영향을 미치는지를 microdroplet debonding 시험을 통해 분석하였다. 플라즈마 처리에 의하여 섬유표면에 산소함유기들이 증가하는 결과를 보였으며, 처리시간과 처리전력이 증가함에 따라 에칭에 의한 표면조도(RMS roughness)가 증가하였다. 그러나 장시간의 플라즈마 처리조건에서는 표면에 degradation이 발생하여 오히려 표면조도가 감소하는 결과를 보였다. PK 섬유와 고무와의 계면전단강도는 처리시간 60 s의 80 W, 처리전력 60 W의 180 s에서 처리한 경우에 최대 계면전단강도를 나타내었다. 그러나 그 이상으로 증가하면 degradation이 발생하면서 계면전단강도가 감소하였다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. K. Tagawa, Industrial Fabric Products Review, October, 32 (2007).
  2. P. Gupata, J. T. Schulte, J. E. Flood, and J. E. Spruiel, J. Appl. Polym. Sci., 7, 1794 (2001).
  3. T. Matsuo, Textile Progress, 40, 87 (2008). https://doi.org/10.1080/00405160802133028
  4. N. Inagaki, S. Tasaka, H. Kawai, and Y. Yamada, J. Appl. Polym. Sci., 64, 831 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970502)64:5<831::AID-APP2>3.0.CO;2-Q
  5. S. Gao and Y. Zeng, J. Appl. Polym. Sci., 47, 2065 (1993). https://doi.org/10.1002/app.1993.070471116
  6. S. G. Lee, D. C. Kim, and T. J. Kang, J. Korean Fiber Soc., 34, 459 (1997).
  7. H. Y. Choi and J. S. Lee, J. Korean Soc. Clothing & Textiles, 29, 561 (2005).
  8. J. M. Park, D. S. Kim, and S. R. Kim, J. Korean Compos. Mater., 6, 74 (2003).
  9. L. Goglio, M. Rossetto, and E. Dragoni, Int. J. Adhes. Adhes., 28, 427 (2008). https://doi.org/10.1016/j.ijadhadh.2008.04.001
  10. H. F. Zhao, M. Chen, and Y. Jin, Mater. Des., 30, 154 (2009). https://doi.org/10.1016/j.matdes.2008.04.035
  11. M. Nardin and I. M. Ward, Mater. Sci. Technol., 3, 814 (1987). https://doi.org/10.1179/mst.1987.3.10.814
  12. S. G. Lee, J. I. Yuck, C. W. Joo, and T. J. Kang, J. Korean Fiber Soc., 33, 376 (1996).
  13. B. Tissington, G. Pollard, and I. M. Ward, Compos. Sci. Technol., 44, 197 (1992). https://doi.org/10.1016/0266-3538(92)90012-R

Cited by

  1. Photo-oxidation and Dyeability of Poly Ketone by UV/O3Irradiation vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.25