Design of Inductive Loaded Microstrip Patch Antennas with Suppressed Radiations along Horizontal Directions

수평방향 방사가 억제된 Inductive loaded 마이크로스트립 패치 안테나의 설계

  • 윤영민 (숭실대학교 정보통신전자공학부) ;
  • 곽은혁 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부)
  • Received : 2011.11.11
  • Accepted : 2012.02.17
  • Published : 2012.02.25

Abstract

The inductive loaded patch antenna with suppressed radiation along the horizontal plane and enhanced broadside gain is investigated by adjusting the width and the via radius of a unit cell at a fixed length of a unit cell. The effects of the via radius and the width of the unit cell on the dispersion characteristics of the inductive loaded transmission line are investigated. The systematic study to determine the via radius and the width of the unit cell for the effective dielectric constant of the inductive loaded patch antenna close to 1 in order to suppress the radiation along the horizontal plane is presented. Inductive loaded patch antennas composed of five unit cells with resonant frequency of 5 GHz are designed and their radiation characteristics are presented. The horizontal radiation along the E-plane is greatly suppressed to less than -15 dBi when the effective dielectric constant of the inductive loaded patch antenna is slightly less than 1.

단위 셀의 길이를 고정시키고 단위 셀의 폭과 via를 변화시켜 수평방향 방사가 억제되고 전방방향 방사가 증가하여 방사특성이 향상되는 inductive loaded 패치 안테나에 대하여 연구하였다. Inductive loaded 전송선을 구성하는 단위 셀의 구조 파라미터인 via 반경과 단위 셀 패치의 면적에 따라 분산 특성을 살펴보았다. 수평방향의 방사를 억제시키기 위해 inductive loaded 패치 안테나의 유효유전상수를 1과 가깝게 만드는 via의 반경과 단위 셀 패치의 폭을 결정하는 방법을 체계적으로 설명하였다. 5 GHz에서 동작하는 $5{\times}1$ inductive loaded 패치 안테나를 설계하여 방사특성을 전산모의한 결과 유효유전상수가 1보다 다소작을 때 E-평면 방향 수평 방사가 약 -15 dBi 이하로 크게 억제됨을 확인하였다.

Keywords

References

  1. Y. Fu and N. Yuan, "Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials" IEEE Antennas and Wireless Propagation Letters, Vol. 3, pp. 63-65, 2004. https://doi.org/10.1109/LAWP.2004.827891
  2. Z. Iluz, R. Shavit, and R. Bauer, "Microstrip Antenna Phased Array With Electromagnetic Bandgap Substrate," IEEE Trans. Antennas Propag., vol. 52, no. 6, pp. 1446-1453, June. 2004. https://doi.org/10.1109/TAP.2004.830252
  3. H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 57-59, 2010. https://doi.org/10.1109/LAWP.2010.2042565
  4. M. Coulombe, S. F. Koodiani, and C. Caloz, "Compact Elongated Mushroom (EM)-EBG Structure for Enhancement of Patch Antenna Array Performances," IEEE Trans. Antennas Propag., vol. 58, no. 4, Apl. 2010.
  5. M. M. Nikolić, A. R. Djordjević, and A. Nehorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3469-3476, Nov. 2005.
  6. 윤영민, 김태영, 조명기, 김부균, "패치의 폭이 핀 배열 패치 안테나의 방사 특성에 미치는 효과," 전자공학회논문지-TC편, 제 47권, 제 1호, pp. 77-83, 2010년 01월.
  7. T.-Y. Kim, Y.-M. Yoon, G.-S. Kim, and B.-G. Kim, "A linear phased array antenna composed of inductive loaded patch antennas," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1051-1054, 2011. https://doi.org/10.1109/LAWP.2011.2169930
  8. A. Lai, K. M. K. H. Leong, and T. Itoh, "Infinite Wavelength Resonant Antennas With Monopolar Radiation Pattern Based on Periodic Structures," IEEE Trans. Antennas Propag., vol. 55, no. 3, Mar. 2007.
  9. S. Clavijo, R. E. Díaz, and W. E. McKinzie, III, "Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas," IEEE Trans. Antennas Propag., vol. 51, no. 10, Oct. 2003.
  10. S. Chattopadhyay, M. Biswas, J. Y. Siddiqui, and D. Guha, "Rectangular microstrips with variable air gap and varying aspect ratio: improved formulations and experiments," Microwave and Optical Technology Letters, vol. 51, no. 1, pp. 169-173, May, 2009. https://doi.org/10.1002/mop.24025
  11. D. Guha, "Resonant frequency of circular microstrip antennas with and without air gaps," IEEE Trans. Antennas Propag., vol. 49, no. 1, pp. 55-59, Jan. 2001. https://doi.org/10.1109/8.910530
  12. H. A. Wheeler, "Transmission-line properties of a strip on a dielectric sheet on a plane," IEEE Trans. Microwave Theory Tech., vol. 25, no. 8, pp. 631-647, Aug. 1977. https://doi.org/10.1109/TMTT.1977.1129179